Skip to main content

Advertisement

Log in

Bone metastasis and the metastatic niche

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions within this specialized microenvironment which give rise to the high incidence of bone metastasis in breast and prostate cancer patients have long remained uncharacterized. With the recent description of the bone metastatic “niche,” considerable focus has been placed on understanding how the bone stroma contributes to each step of metastasis. Discoveries within this field have demonstrated that when cancer cells home to the niche in which hematopoietic and mesenchymal stem/progenitor cells normally reside, a bidirectional crosstalk emerges between the tumor cells and the bone metastatic stroma. This communication modulates every step of cancer cell metastasis to the bone, including the initial homing and seeding, formation of micrometastases, outgrowth of macrometastases, and the maintenance of long-term dormancy of disseminated tumor cells in the bone. In clinical practice, targeting the bone metastatic niche is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance, and other aspects of cancer progression. Here, we review the current knowledge concerning the role of the bone metastatic niche in bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ell B, Kang Y (2012) SnapShot: bone metastasis. Cell 151:690–690, e691

    Article  CAS  PubMed  Google Scholar 

  3. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  4. Pienta KJ, Robertson BA, Coffey DS, Taichman RS (2013) The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin Cancer Res Off J Am Assoc Cancer Res 19:5849–5855

    Article  Google Scholar 

  5. Suva LJ, Washam C, Nicholas RW, Griffin RJ (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7:208–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sturge J, Caley MP, Waxman J (2011) Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 8:357–368

    CAS  PubMed  Google Scholar 

  7. Coleman RE (2012) Bone cancer in 2011: prevention and treatment of bone metastases. Nat Rev Clin Oncol 9:76–78

    Article  CAS  Google Scholar 

  8. Hage WD, Aboulafia AJ, Aboulafia DM (2000) Incidence, location, and diagnostic evaluation of metastatic bone disease. Orthop Clin N Am 31:515–528, vii

    Article  CAS  Google Scholar 

  9. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res Off J Am Assoc Cancer Res 12:6243s–6249s

    Article  Google Scholar 

  10. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    Article  PubMed  Google Scholar 

  11. Park SI, Soki FN, McCauley LK (2011) Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron Off J Int Cancer Microenviron Soc 4:237–246

    Article  CAS  Google Scholar 

  12. Shen Y, Nilsson SK (2012) Bone, microenvironment and hematopoiesis. Curr Opin Hematol 19:250–255

    Article  CAS  PubMed  Google Scholar 

  13. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6:2609–2617

    Article  CAS  PubMed  Google Scholar 

  14. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    CAS  PubMed  Google Scholar 

  16. Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316

    Article  PubMed  Google Scholar 

  17. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481:314–320

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

  21. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  22. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS (2013) PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770

    Article  CAS  PubMed  Google Scholar 

  29. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  30. Mercier FE, Ragu C, Scadden DT (2012) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60

    Article  CAS  Google Scholar 

  31. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chantrain CF, Feron O, Marbaix E, DeClerck YA (2008) Bone marrow microenvironment and tumor progression. Cancer Microenviron Off J Int Cancer Microenviron Soc 1:23–35

    Article  CAS  Google Scholar 

  34. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  35. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  CAS  Google Scholar 

  36. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    Article  CAS  PubMed  Google Scholar 

  38. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lecomte J, Masset A, Blacher S, Maertens L, Gothot A, Delgaudine M, Bruyere F, Carnet O, Paupert J, Illemann M et al (2012) Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia 14:943–951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310:71–81

    Article  CAS  PubMed  Google Scholar 

  42. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Investig 121:1298–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222:268–277

    Article  CAS  PubMed  Google Scholar 

  46. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865

    Article  CAS  PubMed  Google Scholar 

  47. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817

    Article  CAS  PubMed  Google Scholar 

  48. Zheng H, Kang Y (2014) Multilayer control of the EMT master regulators. Oncogene 33:1755–1763

    Article  CAS  PubMed  Google Scholar 

  49. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181:1895–1899

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massague J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154:1060–1073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450–1464

    Article  CAS  PubMed  Google Scholar 

  52. Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA et al (2015) CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27:755–768

    Article  CAS  PubMed  Google Scholar 

  53. Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A (2013) Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 6:1347–1361

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  55. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res Off J Am Assoc Cancer Res 16:2927–2931

    Article  CAS  Google Scholar 

  56. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res Off J Am Assoc Cancer Res 17:2074–2080

    Article  CAS  Google Scholar 

  57. Lu X, Kang Y (2009) Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23:9–18

    Article  CAS  PubMed  Google Scholar 

  59. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694

    Article  CAS  PubMed  Google Scholar 

  60. Schroeder MA, DiPersio JF (2012) Mobilization of hematopoietic stem and leukemia cells. J Leukoc Biol 91:47–57

    Article  CAS  PubMed  Google Scholar 

  61. Kelly T, Suva LJ, Huang Y, Macleod V, Miao HQ, Walker RC, Sanderson RD (2005) Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res 65:5778–5784

    Article  CAS  PubMed  Google Scholar 

  62. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, Andrews D, Mikeska T, Mangan NE, Samarajiwa SA et al (2012) Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18:1224–1231

    Article  CAS  PubMed  Google Scholar 

  64. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Investig 120:2030–2039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48:54–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830

    Article  CAS  PubMed  Google Scholar 

  68. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang J, Lu G, Roodman GD, Loberg RD et al (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210

    Article  PubMed  CAS  Google Scholar 

  70. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  CAS  PubMed  Google Scholar 

  71. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Esposito M, Kang Y (2014) Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 141:222–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  CAS  PubMed  Google Scholar 

  74. Cox TR, Rumney RM, Schoof EM, Perryman L, Hoye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  CAS  PubMed  Google Scholar 

  75. Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556

    Article  CAS  PubMed  Google Scholar 

  76. Hofbauer LC, Rachner TD, Coleman RE, Jakob F (2014) Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2:500–512

    Article  CAS  PubMed  Google Scholar 

  77. Ottewell PD, Wang N, Meek J, Fowles CA, Croucher PI, Eaton CL, Holen I (2014) Castration-induced bone loss triggers growth of disseminated prostate cancer cells in bone. Endocr Relat Cancer 21:769–781

    Article  CAS  PubMed  Google Scholar 

  78. Ottewell PD, Wang N, Brown HK, Fowles CA, Croucher PI, Eaton CL, Holen I (2015) OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int J Cancer J Int Cancer 137:968–977

    Article  CAS  Google Scholar 

  79. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352:154–164

    Article  CAS  PubMed  Google Scholar 

  80. Clarke BL, Khosla S (2009) Androgens and bone. Steroids 74:296–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Smith EP, Specker B, Korach KS (2010) Recent experimental and clinical findings in the skeleton associated with loss of estrogen hormone or estrogen receptor activity. J Steroid Biochem Mol Biol 118:264–272

    Article  CAS  PubMed  Google Scholar 

  82. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  83. Takahashi N, Udagawa N, Suda T (2014) Vitamin D endocrine system and osteoclasts. BoneKEy Rep 3:495

    Article  PubMed Central  PubMed  Google Scholar 

  84. Morrissey C, Roudier MP, Dowell A, True LD, Ketchanji M, Welty C, Corey E, Lange PH, Higano CS, Vessella RL (2013) Effects of androgen deprivation therapy and bisphosphonate treatment on bone in patients with metastatic castration-resistant prostate cancer: results from the University of Washington Rapid Autopsy Series. J Bone Miner Res Off J Am Soc Bone Miner Res 28:333–340

    Article  CAS  Google Scholar 

  85. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65:7554–7560

    CAS  PubMed  Google Scholar 

  87. Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7:1285–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Clement-Demange L, Clezardin P (2015) Emerging therapies in bone metastasis. Curr Opin Pharmacol 22:79–86

    Article  CAS  PubMed  Google Scholar 

  89. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23:573–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  92. Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Juckstock J, Borgen E, Rack B, Braun S, Sommer H et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse--a European pooled analysis. Clin Cancer Res Off J Am Assoc Cancer Res 17:2967–2976

    Article  Google Scholar 

  94. Grobe A, Blessmann M, Hanken H, Friedrich RE, Schon G, Wikner J, Effenberger KE, Kluwe L, Heiland M, Pantel K et al (2014) Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity. Clin Cancer Res Off J Am Assoc Cancer Res 20:425–433

    Article  CAS  Google Scholar 

  95. Vashist YK, Effenberger KE, Vettorazzi E, Riethdorf S, Yekebas EF, Izbicki JR, Pantel K (2012) Disseminated tumor cells in bone marrow and the natural course of resected esophageal cancer. Ann Surg 255:1105–1112

    Article  PubMed  Google Scholar 

  96. Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre-Ghiso JA (2013) TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 15:1351–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208:2641–2655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ (2013) GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One 8:e61873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC et al (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, Najima Y, Takagi S, Aoki Y, Wake A et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28:275–280

    CAS  PubMed  Google Scholar 

  101. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19:695–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Shao L, Luo Y, Zhou D (2014) Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal 20:1447–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, Zhou XC, Cai YJ, Li ZQ, Zhang F et al (2014) Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25:778–793

    Article  CAS  PubMed  Google Scholar 

  104. Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA (2013) Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121:4821–4831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, Walenkamp AM (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49:219–230

    Article  CAS  PubMed  Google Scholar 

  106. Sison EA, McIntyre E, Magoon D, Brown P (2013) Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML. Mol Cancer Res MCR 11:1004–1016

    Article  CAS  PubMed  Google Scholar 

  107. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    Article  CAS  PubMed  Google Scholar 

  108. Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME, Eber MR, Soki FN, Sadler D, Sud S et al (2012) Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 72:2522–2532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J et al (2003) Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 63:7926–7935

    CAS  PubMed  Google Scholar 

  110. Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, Klyachkin YM, Houghton P, Morris AJ, Vater A et al (2013) Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res MCR 11:793–807

    Article  CAS  PubMed  Google Scholar 

  111. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  CAS  PubMed  Google Scholar 

  112. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  CAS  PubMed  Google Scholar 

  113. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA et al (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratory on bone metastasis was supported by grants from the Komen for the Cure (KG110464), Department of Defense (BC123187), the Breast Cancer Research Foundation, Brewster Foundation, and the National Institutes of Health (R01CA134519 and R01CA141062) to Y.K, an NIH K99 Award (K99CA188093) to G.R. and a pre-doctoral fellowship from the New Jersey Commission on Cancer Research to M.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Esposito, M. & Kang, Y. Bone metastasis and the metastatic niche. J Mol Med 93, 1203–1212 (2015). https://doi.org/10.1007/s00109-015-1329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1329-4

Keywords

Navigation