Skip to main content

Advertisement

Log in

Correlation between gene expression and mutator phenotype predicts homologous recombination deficiency and outcome in ovarian cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

New strategies are needed to predict response to platinum-based chemotherapy and outcome of ovarian cancers. We hypothesized that the mutator phenotype in the cancer genome represents the overuse of alternative DNA repair mechanisms, which might be a sign of homologous recombination (HR) deficiency and can be captured by gene expression. Multidimensional data of ovarian cancer patients and breast cancer patients from The Cancer Genome Atlas (TCGA) database were used for the development and validation of a potential clinical information-independent score that correlates with HR deficiency and predicts outcome. Correlation of the score with platinum response, outcome, and BRCA mutations was assessed. The score correlated with increased genomic mutation rate in both ovarian cancer and breast cancer cases that harbored a substantial subset of HR-deficient samples. Significantly improved outcomes were observed in the high-scoring group versus the low-scoring group in the TCGA dataset and in three large gene expression microarray datasets. A strong correlation was found between the score and the likelihood of achieving complete response to chemotherapy. The score was also found to be highly robust to noises in genomic mutations. Sixty-four patients harboring BRCA mutations were successfully divided into two groups based on scores, with the high-scoring group showing significantly improved outcomes compared with wild-type cases and the low-scoring group showing no significance in all the same analyses. The score was significantly correlated with the response to platinum therapy and outcome. Evaluation of the score as a prognostic tool in ovarian cancer patients is warranted.

Key message

  • We develop a diagnostic signature for the HR-deficiency based on a novel hypothesis.

  • HR-deficiency score is significantly correlated to platinum therapy and outcomes.

  • HRDS was validated by its association with OS, PFS, DFS and CR in validation datasets.

  • Evaluation of the score as a prognostic tool in ovarian cancer patients is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  PubMed  CAS  Google Scholar 

  2. Tutt A, Ashworth A (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 8:571–576

    Article  PubMed  CAS  Google Scholar 

  3. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    Article  PubMed  CAS  Google Scholar 

  4. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6:923–935

    Article  CAS  Google Scholar 

  5. Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT et al (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22:669–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  PubMed  CAS  Google Scholar 

  7. Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440

    Article  PubMed  CAS  Google Scholar 

  8. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  9. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  10. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  PubMed  CAS  Google Scholar 

  11. Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET (2002) Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst 94:990–1000

    Article  PubMed  CAS  Google Scholar 

  12. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548

    Article  PubMed  CAS  Google Scholar 

  13. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, Levine DA, Cannistra SA (2010) Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol 28:3555–3561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

  15. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, Zhang W (2011) Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306:1557–1565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Tirkkonen M, Johannsson O, Agnarsson BA, Olsson H, Ingvarsson S, Karhu R, Tanner M, Isola J, Barkardottir RB, Borg A et al (1997) Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res 57:1222–1227

    PubMed  CAS  Google Scholar 

  17. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J et al (2008) A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 68:5478–5486

    Article  PubMed  CAS  Google Scholar 

  18. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Masuzaki H, Katabuchi H, Kawakami Y, Okamoto A, Nogawa T et al (2012) High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res 18:1374–1385

    Article  PubMed  CAS  Google Scholar 

  19. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B et al (2008) Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14:5198–5208

    Article  PubMed  CAS  Google Scholar 

  20. Stefansson OA, Villanueva A, Vidal A, Marti L, Esteller M (2012) BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer. Epigenetics 7:1225–1229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, Waldman T, Lord CJ, Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Venkitaraman AR (2004) Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat Rev Cancer 4:266–276

    Article  PubMed  CAS  Google Scholar 

  23. Lord CJ, McDonald S, Swift S, Turner NC, Ashworth A (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–2019

    Article  CAS  Google Scholar 

  24. Brown LA, Irving J, Parker R, Kim H, Press JZ, Longacre TA, Chia S, Magliocco A, Makretsov N, Gilks B et al (2006) Amplification of EMSY, a novel oncogene on 11q13, in high grade ovarian surface epithelial carcinomas. Gynecol Oncol 100:264–270

    Article  PubMed  CAS  Google Scholar 

  25. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci U S A 107:1506–1511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D (2009) miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16:492–498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wang J, He J, Su F, Ding N, Hu W, Yao B, Wang W, Zhou G (2013) Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis 4:e699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, Smith-McCune K, Broaddus R, Lu KH, Chen J et al (2012) Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 107:1776–1782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD 2nd, Abkevich V, Potter J, Pruss D, Glenn P et al (2010) Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28:3570–3576

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY (2003) Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97:2187–2195

    Article  PubMed  CAS  Google Scholar 

  33. Ben David Y, Chetrit A, Hirsh-Yechezkel G, Friedman E, Beck BD, Beller U, Ben-Baruch G, Fishman A, Levavi H, Lubin F et al (2002) Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J Clin Oncol 20:463–466

    Article  PubMed  CAS  Google Scholar 

  34. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S (2008) Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 26:20–25

    Article  PubMed  Google Scholar 

  35. Johannsson OT, Ranstam J, Borg A, Olsson H (1998) Survival of BRCA1 breast and ovarian cancer patients: a population-based study from southern Sweden. J Clin Oncol 16:397–404

    PubMed  CAS  Google Scholar 

  36. Pharoah PD, Easton DF, Stockton DL, Gayther S, Ponder BA (1999) Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res 59:868–871

    PubMed  CAS  Google Scholar 

  37. Berchuck A, Heron KA, Carney ME, Lancaster JM, Fraser EG, Vinson VL, Deffenbaugh AM, Miron A, Marks JR, Futreal PA et al (1998) Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4:2433–2437

    PubMed  CAS  Google Scholar 

  38. Foster KA, Harrington P, Kerr J, Russell P, DiCioccio RA, Scott IV, Jacobs I, Chenevix-Trench G, Ponder BA, Gayther SA (1996) Somatic and germline mutations of the BRCA2 gene in sporadic ovarian cancer. Cancer Res 56:3622–3625

    PubMed  CAS  Google Scholar 

  39. Pignata S, Cannella L, Leopardo D, Pisano C, Bruni GS, Facchini G (2011) Chemotherapy in epithelial ovarian cancer. Cancer letters 303:73–83

    Article  PubMed  CAS  Google Scholar 

  40. Kang J, D'Andrea AD, Kozono D (2012) A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst 104:670–681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C et al (2010) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519

    Article  PubMed  CAS  Google Scholar 

  42. Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60:5329–5333

    PubMed  CAS  Google Scholar 

  43. Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC, D'Andrea AD (2003) Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9:568–574

    Article  PubMed  CAS  Google Scholar 

  44. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B et al (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535

    Article  PubMed  CAS  Google Scholar 

  45. Kunos CA, Sill MW, Buekers TE, Walker JL, Schilder JM, Yamada SD, Waggoner SE, Mohiuddin M, Fracasso PM (2011) Low-dose abdominal radiation as a docetaxel chemosensitizer for recurrent epithelial ovarian cancer: a phase I study of the Gynecologic Oncology Group. Gynecol Oncol 120:224–228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Herzog TJ (2003) Clinical experience with topotecan in relapsed ovarian cancer. Gynecol Oncol 90:S3–7

    Article  PubMed  CAS  Google Scholar 

  47. Baumbusch LO, Helland A, Wang Y, Liestol K, Schaner ME, Holm R, Etemadmoghadam D, Alsop K, Brown P, Mitchell G et al (2013) High levels of genomic aberrations in serous ovarian cancers are associated with better survival. PLoS One 8:e54356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their valuable comments. This work was supported by Key Laboratory of Nutrition and Food Hygiene (Harbin Medical University), Heilongjiang Higher Education Institutions, China (NO.YYKFKT1201).

Conflict of interest

The authors indicated no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhou or Dapeng Hao.

Additional information

Jianping Lu and Dapeng Hao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 161 kb)

ESM 2

(XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, D., Li, C. et al. Correlation between gene expression and mutator phenotype predicts homologous recombination deficiency and outcome in ovarian cancer. J Mol Med 92, 1159–1168 (2014). https://doi.org/10.1007/s00109-014-1191-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1191-9

Keywords

Navigation