Skip to main content
Log in

Anti-TCR therapy combined with fingolimod for reversal of diabetic hyperglycemia by β cell regeneration in the LEW.1AR1-iddm rat model of type 1 diabetes

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The therapeutic capacity of an antibody directed against the T cell receptor (anti-TCR) of the TCR/CD3 complex alone or in combination with fingolimod (FTY720) to reverse the diabetic metabolic state through suppression of autoimmunity and stimulation of β cell regeneration was analyzed in the LEW.1AR1-iddm (IDDM) rat, an animal model of human type 1 diabetes. Animals were treated with anti-TCR (0.5 mg/kg body weight for 5 days) monotherapy or in combination with fingolimod (1 mg/kg body weight for 40 days). Metabolic changes and β cell morphology were analyzed before, immediately after, and 60 days after end of therapy. Both therapies were started early after disease manifestation and led to normoglycemia in parallel with an increase of the C-peptide concentration. Combination therapy increased the β cell mass reaching a range of normoglycemic controls, decreased the apoptosis rate fivefold, and increased the proliferation rate threefold. Additionally, at 60 days after therapy, islets were virtually free of T cells, macrophages, and cytokine expression. In contrast, after anti-TCR monotherapy, β cell mass remained low with an activated immune cell infiltrate. A concomitant fivefold increased β cell apoptosis rate resulted in a complete loss of β cells. Only combination therapy yielded sustained normoglycemia with full reversal of islet infiltration and restoration of pancreatic β cell mass.

Key Message

  • Combination therapy of anti-TCR and fingolimod was effective in the reversal of T1D.

  • Combination therapy increased the pancreatic β cell mass to normoglycemic control levels.

  • Combination therapy leads to a full reversal of pancreatic islet infiltration.

  • Anti-TCR monotherapy did not abolish islet infiltration.

  • Combination therapy was successful only immediately after diabetes manifestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eisenbarth GS ( 2010) Type I diabetes. Molecular, cellular and clinical immunology, pp. (http://www.barbaradaviscenter.org/)

  2. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467

    Article  CAS  PubMed  Google Scholar 

  3. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  CAS  PubMed  Google Scholar 

  4. von Herrath M (2010) Combination therapies for type 1 diabetes: why not now? Immunotherapy 2:289–291

    Article  Google Scholar 

  5. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118

    Article  PubMed  Google Scholar 

  6. Chatenoud L (2005) CD3-specific antibodies restore self-tolerance: mechanisms and clinical applications. Curr Opin Immunol 17:632–637

    Article  CAS  PubMed  Google Scholar 

  7. Chatenoud L (2008) The use of CD3-specific antibodies in autoimmune diabetes: a step toward the induction of immune tolerance in the clinic. Handb Exp Pharmacol 181:221–236

    Article  CAS  PubMed  Google Scholar 

  8. Chatenoud L (2010) Immune therapy for type 1 diabetes mellitus-what is unique about anti-CD3 antibodies? Nat Rev Endocrinol 6:149–157

    Article  CAS  PubMed  Google Scholar 

  9. Hünig T, Tiefenthaler G, Lawetzky A, Kubo R, Schlipköter E (1989) T-cell subpopulations expressing distinct forms of the TCR in normal, athymic, and neonatally TCR alpha beta-suppressed rats. Cold Spring Harb Symp Quant Biol 54(Pt 1):61–68

    Article  PubMed  Google Scholar 

  10. de la Hera A, Muller U, Olsson C, Isaaz S, Tunnacliffe A (1991) Structure of the T cell antigen receptor (TCR): two CD3 epsilon subunits in a functional TCR/CD3 complex. J Exp Med 173:7–17

    Article  PubMed  Google Scholar 

  11. Chatenoud L (2009) Progress towards the clinical use of CD3 monoclonal antibodies in the treatment of autoimmunity. Curr Opin Organ Transplant 14:351–356

    Article  PubMed  Google Scholar 

  12. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769

    Google Scholar 

  13. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608

    Article  CAS  PubMed  Google Scholar 

  14. Keymeulen B, Walter M, Mathieu C, Kaufman L, Gorus F, Hilbrands R, Vandemeulebroucke E, Van de Velde U, Crenier L, De Block C et al (2010) Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53:614–623

    Article  CAS  PubMed  Google Scholar 

  15. http://www.clinicaltrials.gov/ct2/show/study/NCT01123083

  16. Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry RJ Jr, Bode B, Aronoff S, Holland C, Carlin D et al (2011) Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 378:487–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mehta DS, Christmas RA, Waldmann H, Rosenzweig M (2010) Partial and transient modulation of the CD3-T-cell receptor complex, elicited by low-dose regimens of monoclonal anti-CD3, is sufficient to induce disease remission in non-obese diabetic mice. Immunology 130:103–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. http://www.medicalnewstoday.com/articles/218996.php

  19. Bach JF (2011) Anti-CD3 antibodies for type 1 diabetes: beyond expectations. Lancet 378:459–460

    Article  PubMed  Google Scholar 

  20. Ablamunits V, Henegariu O, Hansen JB, Opare-Addo L, Preston-Hurlburt P, Santamaria P, Mandrup-Poulsen T, Herold KC (2012) Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade: evidence of improved immune regulation. Diabetes 61:145–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K et al (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122:1717–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Leahy JL, Hirsch IB, Peterson KA, Schneider D (2010) Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus. J Clin Endocrinol Metab 95:4206–4216

    Article  CAS  PubMed  Google Scholar 

  23. Jörns A, Rath KJ, Terbish T, Arndt T, zu Vilsendorf AM, Wedekind D, Hedrich HJ, Lenzen S (2010) Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation. Endocrinology 151:3655–3666

    Article  Google Scholar 

  24. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  CAS  PubMed  Google Scholar 

  25. Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  CAS  PubMed  Google Scholar 

  26. Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jörns A, Klöppel G, Wedekind D, Prokop CM, Hedrich HJ (2001) The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44:1189–1196

    Article  CAS  PubMed  Google Scholar 

  27. Jörns A, Günther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 54:2041–2052

    Article  PubMed  Google Scholar 

  28. Hünig T, Wallny HJ, Hartley JK, Lawetzky A, Tiefenthaler G (1989) A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J Exp Med 169:73–86

    Article  PubMed  Google Scholar 

  29. Arndt T, Wedekind D, Weiss H, Tiedge M, Lenzen S, Hedrich H-J, Jörns A (2009) Prevention of spontaneous immune-mediated diabetes development in the LEW.1AR1-iddm rat by selective CD8+ T-cell transfer is associated with a cytokine shift in the pancreas draining lymph nodes. Diabetologia 52:1381–1390

    Article  CAS  PubMed  Google Scholar 

  30. Sempe P, Bedossa P, Richard MF, Villa MC, Bach JF, Boitard C (1991) Anti-alpha/beta T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice. Eur J Immunol 21:1163–1169

    Article  CAS  PubMed  Google Scholar 

  31. Chatenoud L, Bach JF (2005) Resetting the functional capacity of regulatory T cells: a novel immunotherapeutic strategy to promote immune tolerance. Expert Opin Biol Ther 5(Suppl 1):S73–S81

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Han G, Wang J, Wang R, Xu R, Shen B, Qian J, Li Y (2008) Essential roles of TGF-beta in anti-CD3 antibody therapy: reversal of diabetes in nonobese diabetic mice independent of Foxp3 + CD4+ regulatory T cells. J Leukoc Biol 83:280–287

    CAS  PubMed  Google Scholar 

  33. Sherry NA, Chen W, Kushner JA, Glandt M, Tang Q, Tsai S, Santamaria P, Bluestone JA, Brillantes AM, Herold KC (2007) Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 148:5136–5144

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto Y, Tsuchida M, Hanawa H, Abo T (1994) Successful prevention and treatment of autoimmune encephalomyelitis by short-term administration of anti-T-cell receptor alpha beta antibody. Immunology 81:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ke Y, Jiang G, Sun D, Kaplan HJ, Shao H (2011) Anti-CD3 antibody ameliorates experimental autoimmune uveitis by inducing both IL-10 and TGF-beta dependent regulatory T cells. Clin Immunol 138:311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. von Herrath MG, Coon B, Wolfe T, Chatenoud L (2002) Nonmitogenic CD3 antibody reverses virally induced (rat insulin promoter-lymphocytic choriomeningitis virus) autoimmune diabetes without impeding viral clearance. J Immunol 168:933–941

    Article  Google Scholar 

  37. Chatenoud L (2008) Chemical immunosuppression in islet transplantation—friend or foe? N Engl J Med 358:1192–1193

    Article  CAS  PubMed  Google Scholar 

  38. Boettler T, von Herrath M (2010) Immunotherapy of type 1 diabetes—how to rationally prioritize combination therapies in T1D. Int Immunopharmacol 10:1491–1495

    Article  CAS  PubMed  Google Scholar 

  39. Matthews JB, Staeva TP, Bernstein PL, Peakman M, von Herrath M (2010) Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF type 1 diabetes combination therapy assessment group. Clin Exp Immunol 160:176–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bresson D, Togher L, Rodrigo E, Chen Y, Bluestone JA, Herold KC, von Herrath M (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 116:1371–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Penaranda C, Tang Q, Ruddle NH, Bluestone JA (2010) Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes 59:1461–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Weir GC, Bonner-Weir S (2010) Dreams for type 1 diabetes: shutting off autoimmunity and stimulating beta-cell regeneration. Endocrinology 151:2971–2973

    Article  CAS  PubMed  Google Scholar 

  43. Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55:3238–3245

    Article  CAS  PubMed  Google Scholar 

  44. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    Article  CAS  PubMed  Google Scholar 

  45. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A (2010) Beta-cell growth and regeneration: replication is only part of the story. Diabetes 59:2340–2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Khalaileh A, Gonen-Gross T, Magenheim J, Nir T, Porat S, Salpeter S, Stolovich-Rain M, Swisa A, Weinberg N, Dor Y (2008) Determinants of pancreatic beta-cell regeneration. Diabetes Obes Metab 10(Suppl 4):128–135

    Article  PubMed  Google Scholar 

  47. Schloot NC, Hanifi-Moghaddam P, Aabenhus-Andersen N, Alizadeh BZ, Saha MT, Knip M, Devendra D, Wilkin T, Bonifacio E, Roep BO et al (2007) Association of immune mediators at diagnosis of type 1 diabetes with later clinical remission. Diabet Med 24:512–520

    Article  CAS  PubMed  Google Scholar 

  48. Waldron-Lynch F, von Herrath M, Herold KC (2008) Towards a curative therapy in type 1 diabetes: remission of autoimmunity, maintenance and augmentation of beta cell mass. Novartis Found Symp 292:143–202

    Google Scholar 

  49. Leavenworth JW, Ma X, Mo YY, Pauza ME (2009) SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J Immunol 183:1110–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rapoport MJ, Mor A, Vardi P, Ramot Y, Winker R, Hindi A, Bistritzer T (1998) Decreased secretion of Th2 cytokines precedes up-regulated and delayed secretion of Th1 cytokines in activated peripheral blood mononuclear cells from patients with insulin-dependent diabetes mellitus. J Autoimmun 11:635–642

    Article  CAS  PubMed  Google Scholar 

  51. Zak KP, Popova VV, Mel'nichenko SV, Tron'ko EN, Man'kovskii BN (2010) The level of circulating cytokines and chemokines in the preclinical and early clinical stages of type IA diabetes mellitus development. Ter Arkh 82:10–15

    CAS  PubMed  Google Scholar 

  52. Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO (2008) Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105:12439–12444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (JO 395/2-1) and the European Union (Collaborative Project NAIMIT in the 7th Framework Programme, Contract No. 241447). We thank D. Lischke and U. Sommerfeld for skillful technical assistance.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd Lenzen.

Additional information

A. J. and M. A. contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 69.0 kb)

ESM 2

(DOC 56.5 kb)

Supplementary Figure S1

High resolution image (TIFF 682 KB)

(JPEG 106 KB)

Supplementary Figure S1

High resolution image (TIFF 543 KB)

(JPEG 91.2 KB)

Supplementary Figure S1

High resolution image (TIFF 18.0 MB)

(JPEG 232 KB)

Supplementary Figure S1

High resolution image (TIFF 853 KB)

(JPEG 144 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jörns, A., Akin, M., Arndt, T. et al. Anti-TCR therapy combined with fingolimod for reversal of diabetic hyperglycemia by β cell regeneration in the LEW.1AR1-iddm rat model of type 1 diabetes. J Mol Med 92, 743–755 (2014). https://doi.org/10.1007/s00109-014-1137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1137-2

Keywords

Navigation