Skip to main content
Log in

Green tea epigallocatechin-3-gallate modulates differentiation of naïve CD4+ T cells into specific lineage effector cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We and others have previously shown that epigallocatechin-3-gallate (EGCG) attenuates experimental autoimmune encephalomyelitis (EAE) and alters CD4+ T cell subpopulations. In this study, we investigated how EGCG impacts differentiation of naïve CD4+ T cells into different effector lineages and report that EGCG impeded Th1, Th9, and Th17 differentiation and prevented IL-6-induced suppression of Treg development. We further showed that EGCG inhibited T-bet, PU.1, and RORγt, the specific transcription factors for Th1, Th9, and Th17 differentiation, respectively. These effects, in turn, may be mediated by EGCG-induced downregulation of transducers p-STAT1 and p-STAT4 for Th1, and p-STAT3 for Th17. EGCG-induced change in Th17/Treg balance may be mediated by its inhibition of IL-6 signaling because EGCG inhibited soluble IL-6R, membrane gp130, and IL-6-induced phosphorylation of STAT3. This notion was further supported by the in vivo results showing inhibited IL-6 and soluble IL-6R but increased soluble gp130 levels in plasma from EAE mice fed EGCG. Together, our results suggest that EGCG modulates development of CD4+ T cell lineages through impacting their respective and interactive regulatory networks ultimately leading to an attenuated autoimmune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reiner SL (2007) Development in motion: helper T cells at work. Cell 129:33–36

    Article  PubMed  CAS  Google Scholar 

  2. Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238:247–262

    Article  PubMed  CAS  Google Scholar 

  3. Lighvani AA, Frucht DM, Jankovic D, Yamane H, Aliberti J, Hissong BD, Nguyen BV, Gadina M, Sher A, Paul WE et al (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 98:15137–15142

    Article  PubMed  CAS  Google Scholar 

  4. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  5. Dardalhon V, Korn T, Kuchroo VK, Anderson AC (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31:252–256

    Article  PubMed  CAS  Google Scholar 

  6. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  PubMed  CAS  Google Scholar 

  7. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569

    Article  PubMed  CAS  Google Scholar 

  8. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355

    Article  PubMed  CAS  Google Scholar 

  9. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  PubMed  CAS  Google Scholar 

  10. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC et al (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106:12885–12890

    Article  PubMed  CAS  Google Scholar 

  11. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653–1660

    Article  PubMed  CAS  Google Scholar 

  12. Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183:7169–7177

    Article  PubMed  Google Scholar 

  13. Li H, Nourbakhsh B, Ciric B, Zhang GX, Rostami A (2010) Neutralization of IL-9 ameliorates experimental autoimmune encephalomyelitis by decreasing the effector T cell population. J Immunol 185:4095–4100

    Article  PubMed  CAS  Google Scholar 

  14. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L et al (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534

    Article  PubMed  CAS  Google Scholar 

  15. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635

    Article  PubMed  CAS  Google Scholar 

  16. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 9:632–640

    Article  PubMed  CAS  Google Scholar 

  18. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  PubMed  CAS  Google Scholar 

  19. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  20. Abboud PA, Hake PW, Burroughs TJ, Odoms K, O’Connor M, Mangeshkar P, Wong HR, Zingarelli B (2008) Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur J Pharmacol 579:411–417

    Article  PubMed  CAS  Google Scholar 

  21. Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800

    PubMed  CAS  Google Scholar 

  22. Gillespie K, Kodani I, Dickinson DP, Ogbureke KU, Camba AM, Wu M, Looney S, Chu TC, Qin H, Bisch F et al (2008) Effects of oral consumption of the green tea polyphenol EGCG in a murine model for human Sjogren’s syndrome, an autoimmune disease. Life Sci 83:581–588

    Article  PubMed  CAS  Google Scholar 

  23. Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, Kumar GK, Mukhtar H (1999) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 96:4524–4529

    Article  PubMed  CAS  Google Scholar 

  24. Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, Sakai Y, Kurosaka M, Kumagai S (2008) (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum 58:2012–2018

    Article  PubMed  CAS  Google Scholar 

  25. Ran ZH, Chen C, Xiao SD (2008) Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed Pharmacother 62:189–196

    Article  PubMed  CAS  Google Scholar 

  26. Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D (2012) Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4(+) T-cell subsets. Am J Pathol 180:221–234

    Article  PubMed  CAS  Google Scholar 

  27. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC et al (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174

    Article  PubMed  CAS  Google Scholar 

  28. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–971

    Article  PubMed  CAS  Google Scholar 

  29. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, Tian Q, Watowich SS, Jetten AM et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  PubMed  CAS  Google Scholar 

  30. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  PubMed  CAS  Google Scholar 

  31. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835

    Article  PubMed  CAS  Google Scholar 

  32. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G, Vollmar P, Stritesky GL, Kaplan MH, Waisman A et al (2008) IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 105:18460–18465

    Article  PubMed  CAS  Google Scholar 

  33. Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T et al (2010) Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 185:842–855

    Article  PubMed  CAS  Google Scholar 

  34. Aktas O, Kieseier B, Hartung HP (2010) Neuroprotection, regeneration and immunomodulation: broadening the therapeutic repertoire in multiple sclerosis. Trends Neurosci 33:140–152

    Article  PubMed  CAS  Google Scholar 

  35. Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F (2011) Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One 6:e25456

    Article  PubMed  CAS  Google Scholar 

  36. Pae M, Ren Z, Meydani M, Shang F, Meydani SN, Wu D (2010) Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression. J Nutr 140:1509–1515

    Article  PubMed  CAS  Google Scholar 

  37. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  38. Jones GW, McLoughlin RM, Hammond VJ, Parker CR, Williams JD, Malhotra R, Scheller J, Williams AS, Rose-John S, Topley N et al (2010) Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 trans signaling in the local maintenance of Th17 cells. J Immunol 184:2130–2139

    Article  PubMed  CAS  Google Scholar 

  39. Briso EM, Dienz O, Rincon M (2008) Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J Immunol 180:7102–7106

    PubMed  CAS  Google Scholar 

  40. Dominitzki S, Fantini MC, Neufert C, Nikolaev A, Galle PR, Scheller J, Monteleone G, Rose-John S, Neurath MF, Becker C (2007) Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25− T cells. J Immunol 179:2041–2045

    PubMed  CAS  Google Scholar 

  41. Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John S (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem 268:160–167

    Article  PubMed  CAS  Google Scholar 

  42. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  PubMed  CAS  Google Scholar 

  43. Wu D, Guo Z, Ren Z, Guo W, Meydani SN (2009) Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 47:636–643

    Article  PubMed  CAS  Google Scholar 

  44. Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, Pineau B, Weber P (2003) A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 31:88–101

    PubMed  CAS  Google Scholar 

  45. Lambert JD, Lee MJ, Diamond L, Ju J, Hong J, Bose M, Newmark HL, Yang CS (2006) Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 34:8–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephanie Marco for her help in the preparation of the manuscript. This work was supported by the USDA National Institute of Food and Agriculture (NIFA) grant #2010-65200-20360 and USDA, Agriculture Research Service contract #58-1950-0-014.

Disclosure statement

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Effect of EGCG on Th2 differentiation. After naïve CD4+ T cells were cultured under polarized conditions in the presence of EGCG (10 μm). The percentage for IL-4 in CD4+ T cells was determined by FACS. A representative result of three independent experiments is shown (PPT 414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Pae, M., Meydani, S.N. et al. Green tea epigallocatechin-3-gallate modulates differentiation of naïve CD4+ T cells into specific lineage effector cells. J Mol Med 91, 485–495 (2013). https://doi.org/10.1007/s00109-012-0964-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0964-2

Keywords

Navigation