Skip to main content
Log in

Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nanotechnology is one of today’s most promising technological developments, but safety concerns raise questions about its development. Risk assessments of nanomaterials during occupational exposure are crucial for their development. Here, we assessed the lung toxicity of functionalized single-walled carbon nanotube (f-SWCNT) exposure in C57BL/6 mice, elucidated the underlying molecular mechanism, and evaluated the self-repair ability and lung fibrosis of the mice. Soluble f-SWCNTs were administered to mice. After 18 h or 14 days, the lung histopathology, bronchoalveolar lavage fluid, lung edema, vascular permeability, and PaO2 levels were evaluated, and biochemical and immunostaining tests were also performed. We found that some f-SWCNTs could induce acute lung injury (ALI) in mice via proinflammatory cytokine storm signaling through the NF-κB pathway in vivo. We illustrated that corticosteroid treatments could ameliorate the ALI induced by the f-SWCNTs in mice. Surprisingly, the ALI was almost completely reversed within 14 days, while mild to moderate fibrosis, granuloma, and DNA damage remained in the mice at day 14. Our studies indicate potential remedies to address the growing concerns about the safety of nanomaterials. In addition, we notify that the type of functional groups should be considered in nanomedicine application as differently functionalized SWCNTs generated different effects on the lung toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  PubMed  Google Scholar 

  2. Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567

    Article  PubMed  CAS  Google Scholar 

  3. Pope CA 3rd, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    Article  PubMed  CAS  Google Scholar 

  4. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  PubMed  CAS  Google Scholar 

  5. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  PubMed  CAS  Google Scholar 

  6. Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  PubMed  CAS  Google Scholar 

  7. Witzmann FA, Monteiro-Riviere NA (2006) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine 2:158–168

    Article  PubMed  CAS  Google Scholar 

  8. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751

    Article  PubMed  CAS  Google Scholar 

  9. Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, Snyder SE, Yan B (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–689

    Article  PubMed  CAS  Google Scholar 

  10. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  PubMed  CAS  Google Scholar 

  11. Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitt MR (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA 107:12369–12374

    Article  PubMed  CAS  Google Scholar 

  12. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5:1676–1684

    Article  PubMed  CAS  Google Scholar 

  13. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445

    Article  PubMed  CAS  Google Scholar 

  14. Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–590

    Article  PubMed  CAS  Google Scholar 

  15. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  16. Delogu LG, Venturelli E, Manetti R, Pinna GA, Carru C, Madeddu R, Murgia L, Sgarrella F, Dumortier H, Bianco A (2012) Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine (Lond) 7:231–243

    Article  CAS  Google Scholar 

  17. Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W Jr, Watanabe F, Mustafa T et al (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 5:7020–7033

    Article  PubMed  CAS  Google Scholar 

  18. Patlolla A, McGinnis B, Tchounwou P (2011) Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss–Webster mice. J Appl Toxicol 31:75–83

    Article  PubMed  CAS  Google Scholar 

  19. Konduru NV, Tyurina YY, Feng W, Basova LV, Belikova NA, Bayir H, Clark K, Rubin M, Stolz D, Vallhov H et al (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4:e4398

    Article  PubMed  Google Scholar 

  20. Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI (2009) Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 239:224–232

    Article  PubMed  CAS  Google Scholar 

  21. Liu HL, Zhang YL, Yang N, Zhang YX, Liu XQ, Li CG, Zhao Y, Wang YG, Zhang GG, Yang P et al (2011) A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2:e159

    Article  PubMed  Google Scholar 

  22. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107

    Article  PubMed  CAS  Google Scholar 

  23. Schanen BC, Karakoti AS, Seal S, Drake DR 3rd, Warren WL, Self WT (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 3:2523–2532

    Article  PubMed  CAS  Google Scholar 

  24. Adcock IM, Caramori G, Ito K (2006) New insights into the molecular mechanisms of corticosteroids actions. Curr Drug Targets 7:649–660

    Article  PubMed  CAS  Google Scholar 

  25. Tang BM, Craig JC, Eslick GD, Seppelt I, McLean AS (2009) Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med 37:1594–1603

    Article  PubMed  CAS  Google Scholar 

  26. Tyburski JG, Dente C, Wilson RF, Steffes C, Devlin J, Carlin AM, Flynn LM, Shanti C (2001) Differences in arterial and mixed venous IL-6 levels: the lungs as a source of cytokine storm in sepsis. Surgery 130:748–751, discussion 751-742

    Article  PubMed  CAS  Google Scholar 

  27. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  28. Mutlu GM, Budinger GR, Green AA, Urich D, Soberanes S, Chiarella SE, Alheid GF, McCrimmon DR, Szleifer I, Hersam MC (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10:1664–1670

    Article  PubMed  CAS  Google Scholar 

  29. Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25

    Article  PubMed  Google Scholar 

  30. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  PubMed  CAS  Google Scholar 

  31. Kim BY, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WC (2008) Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett 8:3887–3892

    Article  PubMed  CAS  Google Scholar 

  32. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333

    Article  PubMed  Google Scholar 

  33. Sager TM, Castranova V (2009) Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:15

    Article  PubMed  Google Scholar 

  34. Dick CA, Brown DM, Donaldson K, Stone V (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52

    Article  PubMed  CAS  Google Scholar 

  35. Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc 1:239–246

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Xiangwu Ju for help with the illustrations and gratefully acknowledge Prof. Haiyan Xu, Dr. Jie Meng, Dr. Jian Liu, Weiqi Zhang, and Peng Zhang for their helpful suggestions and kind assistance. This work was supported by the National Natural Science Foundation of China (30625013 and 30721063) and the Ministry of Science and Technology of China (2009ZX10004-308, 2009CB522105, and 2011CB933504).

Disclosure

The authors declare no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Jiang.

Additional information

Y. Zhang and J. Deng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Deng, J., Zhang, Y. et al. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med 91, 117–128 (2013). https://doi.org/10.1007/s00109-012-0940-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0940-x

Keywords

Navigation