Skip to main content

Advertisement

Log in

Clinician-performed ultrasound in hemodynamic and cardiac assessment: a synopsis of current indications and limitations

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Accurate hemodynamic and intravascular volume status assessment is essential in the diagnostic and therapeutic management of critically ill patients. Over the last two decades, a number of technological advances were translated into a variety of minimally invasive or non-invasive hemodynamic monitoring modalities. Despite the promise of less invasive technologies, the quality, reliability, reproducibility, and generalizability of resultant hemodynamic and intravascular volume status data have been lacking. Since its formal introduction, ultrasound technology has provided the medical community with a more standardized, higher quality, broadly applicable, and reproducible method of accomplishing the above-mentioned objectives. With the advent of portable, hand-carried devices, the importance of sonography in hemodynamic and volume status assessment became clear. From basic venous collapsibility and global cardiac assessment to more complex tasks such as the assessment of cardiac flow and tissue Doppler signals, the number of real-life indications for sonology continues to increase. This review will provide an outline of the essential ultrasound applications in hemodynamic and volume status assessment, focusing on evidence-based uses and indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carr BG, et al. Intensivist bedside ultrasound (INBU) for volume assessment in the intensive care unit: a pilot study. J Trauma. 2007;63(3):495–500 (discussion 500–2).

    Article  PubMed  Google Scholar 

  2. Eiferman DS, et al. Two methods of hemodynamic and volume status assessment in critically ill patients: a study of disagreement. J Intensive Care Med. 2014.

  3. Bache RJ, Harley A, Greenfield JC Jr. Evaluation of thoracic impedance plethysmography as an indicator of stroke volume in man. Am J Med Sci. 1969;258(2):100–13.

    Article  CAS  PubMed  Google Scholar 

  4. Evans DC, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg. 2009;98(4):199–208.

    CAS  PubMed  Google Scholar 

  5. Vincent JL, et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15(4):229.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stawicki SP, et al. Prospective evaluation of intravascular volume status in critically ill patients: does inferior vena cava collapsibility correlate with central venous pressure? J Trauma Acute Care Surg. 2014;76(4):956–63 (discussion 963–4).

    Article  PubMed  Google Scholar 

  7. Stawicki SP, et al. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg. 2009;209(1):55–61.

    Article  PubMed  Google Scholar 

  8. Stawicki PS, Braslow B, Gracias VH. Exploring measurement biases associated with esophageal Doppler monitoring in critically ill patients in intensive care unit. Ann Thorac Med. 2007;2(4):148–53.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cipolla J, Stawicki S, Spatz D. Hemodynamic monitoring of organ donors: a novel use of the esophageal echo-Doppler probe. Am Surg. 2006;72(6):500–4.

    PubMed  Google Scholar 

  10. Stawicki SP, et al. Use of non-invasive esophageal echo-Doppler system in the ICU: a practical experience. J Trauma. 2005;59(2):506–7.

    Article  PubMed  Google Scholar 

  11. Stawicki SP, et al. Transthoracic echocardiography for suspected pulmonary embolism in the intensive care unit: unjustly underused or rightfully ignored? J Clin Ultrasound. 2008;36(5):291–302.

    Article  PubMed  Google Scholar 

  12. Stawicki SP, et al. Transthoracic echocardiography for pulmonary embolism in the ICU: finding the “right” findings. J Am Coll Surg. 2008;206(1):42–7.

    Article  PubMed  Google Scholar 

  13. Khasawneh FA, Smalligan RD. Focused transthoracic echocardiography. Postgrad Med. 2010;122(3):230–7.

    Article  PubMed  Google Scholar 

  14. Royall NA, et al. Ultrasound-assisted musculoskeletal procedures: a practical overview of current literature. World J Orthop. 2011;2(7):57–66.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Stawicki SP, Bahner DP. Evidence tables: inferior vena cava collapsibility index (IVC-CI). OPUS 12. Scientist. 2012;6(1):3–5.

    Google Scholar 

  16. Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364(8):749–57.

    Article  CAS  PubMed  Google Scholar 

  17. Bahner DP, Hughes D, Royall NA. I-AIM: a novel model for teaching and performing focused sonography. J Ultrasound Med. 2012;31(2):295–300.

    PubMed  Google Scholar 

  18. Bahner DP, et al. What’s new in critical illness and injury science? The challenge of verifying tracheal airway placement: solving the puzzle one piece at a time. Int J Crit Illn Inj Sci. 2013;3(2):105–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Arslanoglu I, et al. Real-time sonography for screening of gallbladder dysfunction in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2001;14(1):61–9.

    CAS  PubMed  Google Scholar 

  20. Bakker J, et al. Sonography as the primary screening method in evaluating blunt abdominal trauma. J Clin Ultrasound. 2005;33(4):155–63.

    Article  PubMed  Google Scholar 

  21. Madjar H, et al. Value of high resolution sonography in breast cancer screening. Ultraschall Med. 1994;15(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  22. Roll SC, et al. Screening for carpal tunnel syndrome using sonography. J Ultrasound Med. 2011;30(12):1657–67.

    PubMed Central  PubMed  Google Scholar 

  23. Youk JH, Kim EK. Supplementary screening sonography in mammographically dense breast: pros and cons. Korean J Radiol. 2010;11(6):589–93.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fry WR, Clagett GC, O’Rourke PT. Ultrasound-guided central venous access. Arch Surg. 1999;134(7):738–40 (discussion 741).

    Article  CAS  PubMed  Google Scholar 

  25. Denys BG, et al. An ultrasound method for safe and rapid central venous access. N Engl J Med. 1991;324(8):566.

    CAS  PubMed  Google Scholar 

  26. Stawicki SP, et al. Portable ultrasonography in mass casualty incidents: the CAVEAT examination. World J Orthop. 2010;1(1):10–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cunningham AR. FAST scan: ultrasound’s role in trauma. Radiol Technol. 2008;79(5):455–8.

    PubMed  Google Scholar 

  28. Vance S. Evidence-based emergency medicine/systematic review abstract. The FAST scan: are we improving care of the trauma patient? Ann Emerg Med. 2007;49(3):364–6.

    Article  PubMed  Google Scholar 

  29. Kartasasmita CB, Yogi A, Rosmayudi O. Pleural effusion examination by ultrasound. J Singapore Paediatr Soc. 1987;29(Suppl 1):117–9.

    PubMed  Google Scholar 

  30. Chavez MA, et al. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir Res. 2014;15:50.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kobal SL, Atar S, Siegel RJ. Hand-carried ultrasound improves the bedside cardiovascular examination. Chest. 2004;126(3):693–701.

    Article  PubMed  Google Scholar 

  32. Estroff JA. Emergency obstetric and gynecologic ultrasound. Radiol Clin North Am. 1997;35(4):921–57.

    CAS  PubMed  Google Scholar 

  33. Higgins RV, et al. Transvaginal sonography as a screening method for ovarian cancer. Gynecol Oncol. 1989;34(3):402–6.

    Article  CAS  PubMed  Google Scholar 

  34. McGuire J, Wood BD. Prospective advancements in ultrasound imaging. Radiol Technol. 2014;85(4):463–6.

    PubMed  Google Scholar 

  35. Zhou YF. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8–27.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vaezy S, Zderic V. Hemorrhage control using high intensity focused ultrasound. Int J Hyperthermia. 2007;23(2):203–11.

    Article  PubMed  Google Scholar 

  37. Hantes ME, et al. Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model. J Bone Joint Surg Am. 2004;86-A(10):2275–82.

    PubMed  Google Scholar 

  38. McAlinden MM. Fracture healing using low-intensity pulsed ultrasound. CMAJ. 2002;167(2):128 (author reply 128).

    PubMed Central  PubMed  Google Scholar 

  39. Kavros SJ, et al. Expedited wound healing with noncontact, low-frequency ultrasound therapy in chronic wounds: a retrospective analysis. Adv Skin Wound Care. 2008;21(9):416–23.

    Article  PubMed  Google Scholar 

  40. Pasquero P, et al. Inferior vena cava diameters and collapsibility index changes reveal early volume depletion in a healthy donor model. Crit Ultrasound J. 2012;4(Suppl 1):A29.

    Article  PubMed Central  Google Scholar 

  41. Thanakitcharu P, Charoenwut M, Siriwiwatanakul N. Inferior vena cava diameter and collapsibility index: a practical non-invasive evaluation of intravascular fluid volume in critically-ill patients. J Med Assoc Thai. 2013;96(Suppl 3):S14–22.

    PubMed  Google Scholar 

  42. Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol. 2008;74(4):123–35.

    CAS  PubMed  Google Scholar 

  43. Kent A, et al. Sonographic evaluation of intravascular volume status in the surgical intensive care unit: a prospective comparison of subclavian vein and inferior vena cava collapsibility index. J Surg Res. 2013;184(1):561–6.

    Article  PubMed  Google Scholar 

  44. Resnick J, et al. Ultrasound does not detect early blood loss in healthy volunteers donating blood. J Emerg Med. 2011;41(3):270–5.

    Article  PubMed  Google Scholar 

  45. Keller AS, et al. Diagnostic accuracy of a simple ultrasound measurement to estimate central venous pressure in spontaneously breathing, critically ill patients. J Hosp Med. 2009;4(6):350–5.

    Article  PubMed  Google Scholar 

  46. Bailey JK, et al. Correlation of internal jugular vein/common carotid artery ratio to central venous pressure: a pilot study in pediatric burn patients. J Burn Care Res. 2012;33(1):89–92.

    Article  PubMed  Google Scholar 

  47. Deol GR, et al. Ultrasound accurately reflects the jugular venous examination but underestimates central venous pressure. Chest. 2011;139(1):95–100.

    Article  PubMed  Google Scholar 

  48. Schefold JC, et al. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med. 2010;38(5):632–7.

    Article  PubMed  Google Scholar 

  49. Manasia AR, et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. J Cardiothorac Vasc Anesth. 2005;19(2):155–9.

    Article  PubMed  Google Scholar 

  50. Gunst M, et al. Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care. J Trauma. 2008;65(3):509–16.

    Article  PubMed  Google Scholar 

  51. Gunst M, et al. Bedside echocardiographic assessment for trauma/critical care: the BEAT exam. J Am Coll Surg. 2008;207(3):e1–3.

    Article  PubMed  Google Scholar 

  52. Stawicki SP, et al. Intensivist use of hand-carried ultrasound to measure E/E’ and IVC collapsibility in estimating volume status: correlations with pulmonary artery and central venous pressures. South Med J. 2008;101:861.

    Google Scholar 

  53. Melamed R, et al. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest. 2009;135(6):1416–20.

    Article  PubMed  Google Scholar 

  54. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49(4):393–401.

    Article  PubMed  Google Scholar 

  55. Eachempati SR, et al. The clinical use of an esophageal Doppler monitor for hemodynamic monitoring in sepsis. J Clin Monit Comput. 1999;15(3–4):223–5.

    Article  CAS  PubMed  Google Scholar 

  56. Kauffman KE. Newer trends in monitoring: the esophageal Doppler monitor. AANA J. 2000;68(5):421–8.

    CAS  PubMed  Google Scholar 

  57. Atlas G, Mort T. Placement of the esophageal Doppler ultrasound monitor probe in awake patients. Chest. 2001;119(1):319.

    Article  CAS  PubMed  Google Scholar 

  58. Lichtenberger M, et al. Comparison of esophageal Doppler monitor generated minute distance and cardiac output in a porcine model of ventricular fibrillation. Resuscitation. 1999;41(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  59. DiCorte CJ, et al. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69(6):1782–6.

    Article  CAS  PubMed  Google Scholar 

  60. Roeck M, et al. Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med. 2003;29(10):1729–35.

    Article  PubMed  Google Scholar 

  61. Hussien M, et al. Use of transesophageal Doppler as a sole cardiac output monitor for reperfusion hemodynamic changes during living donor liver transplantation: an observational study. Saudi J Anaesth. 2011;5(3):264–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Stawicki SP, et al. Esophageal Doppler monitoring during organ donor resuscitation: new benefits of existing technology. Prog Transplant. 2005;15(4):320.

    Article  PubMed  Google Scholar 

  63. Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth Analg. 2009;109(2):340–53.

    Article  PubMed  Google Scholar 

  64. Mondillo S, et al. Hand-held echocardiography: its use and usefulness. Int J Cardiol. 2006;111(1):1–5.

    Article  PubMed  Google Scholar 

  65. ImaCor, Inc. The hTEE approach. 2014 (cited 2014 August 15, 2014). Available from: http://imacorinc.com/htee/the-htee-approach.html.

  66. Shillcutt SK, Bick JS. Echo didactics: a comparison of basic transthoracic and transesophageal echocardiography views in the perioperative setting. Anesth Analg. 2013;116(6):1231–6.

    Article  PubMed  Google Scholar 

  67. Mintz GS, Kotler MN. Clinical value and limitations of echocardiography. Its use in the study of patients with infectious endocarditis. Arch Intern Med. 1980;140(8):1022–7.

    Article  CAS  PubMed  Google Scholar 

  68. DeMaria AN, et al. Value and limitations of two dimensional echocardiography in assessment of cardiomyopathy. Am J Cardiol. 1980;46(7):1224–31.

    Article  CAS  PubMed  Google Scholar 

  69. DeMaria AN, et al. Value and limitations of contrast echocardiography in cardiac diagnosis. Cardiovasc Clin. 1983;13(3):167–79.

    CAS  PubMed  Google Scholar 

  70. Mathur SK, Singh P. Transoesophageal echocardiography related complications. Indian J Anaesth. 2009;53(5):567–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Kneeshaw JD. Transoesophageal echocardiography (TOE) in the operating room. Br J Anaesth. 2006;97(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  72. Sarosiek K, et al. Perioperative use of the imacor hemodynamic transesophageal echocardiography probe in cardiac surgery patients—initial experience. ASAIO J. 2014;60:553–8.

    Article  PubMed  Google Scholar 

  73. Cheitlin MD, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108(9):1146–62.

    Article  PubMed  Google Scholar 

  74. Kenaan M, Gajera M, Goonewardena SN. Hemodynamic assessment in the contemporary intensive care unit: a review of circulatory monitoring devices. Crit Care Clin. 2014;30(3):413–45.

    Article  PubMed  Google Scholar 

  75. Joseph MX, et al. Transthoracic echocardiography to identify or exclude cardiac cause of shock. Chest. 2004;126(5):1592–7.

    Article  PubMed  Google Scholar 

  76. Vieillard-Baron A, et al. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166(10):1310–9.

    Article  PubMed  Google Scholar 

  77. Stawicki SP, et al. Incidental findings on intensivist bedside ultrasonographic (INBU) examinations: why should we care? OPUS 12. Scientist. 2008;2(3):11–4.

    Google Scholar 

  78. Colreavy FB, et al. Transesophageal echocardiography in critically ill patients. Crit Care Med. 2002;30(5):989–96.

    Article  PubMed  Google Scholar 

  79. Price S, et al. Echocardiography in the critically ill: current and potential roles. Intensive Care Med. 2006;32(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  80. Erbel R, et al. Echocardiography in diagnosis of aortic dissection. Lancet. 1989;1(8636):457–61.

    Article  CAS  PubMed  Google Scholar 

  81. Nienaber CA, et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med. 1993;328(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  82. Hilberath JN, et al. Safety of transesophageal echocardiography. J Am Soc Echocardiogr. 2010;23(11):1115–27 (quiz 1220-1).

    Article  PubMed  Google Scholar 

  83. Wagner CE, et al. Use of a miniaturized transesophageal echocardiographic probe in the intensive care unit for diagnosis and treatment of a hemodynamically unstable patient after aortic valve replacement. J Cardiothorac Vasc Anesth. 2012;26(1):95–7.

    Article  PubMed  Google Scholar 

  84. Stec S, et al. First experience with microprobe transoesophageal echocardiography in non-sedated adults undergoing atrial fibrillation ablation: feasibility study and comparison with intracardiac echocardiography. Europace. 2011;13(1):51–6.

    Article  PubMed  Google Scholar 

  85. Vieillard-Baron A, et al. A pilot study on safety and clinical utility of a single-use 72-h indwelling transesophageal echocardiography probe. Intensive Care Med. 2013;39(4):629–35.

    Article  PubMed  Google Scholar 

  86. Matulevicius SA, et al. Appropriate use and clinical impact of transthoracic echocardiography. JAMA Intern Med. 2013;173(17):1600–7.

    Article  PubMed  Google Scholar 

  87. Alqarqaz M, et al. Applicability, limitations and downstream impact of echocardiography utilization based on the appropriateness use criteria for transthoracic and transesophageal echocardiography. Int J Cardiovasc Imaging. 2012;28(8):1951–8.

    Article  PubMed  Google Scholar 

  88. Douglas PS, et al. ACCF/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 appropriateness criteria for transthoracic and transesophageal echocardiography: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American Society of Echocardiography, American College of Emergency Physicians, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance. Endorsed by the American College of Chest Physicians and the Society of Critical Care Medicine. J Am Soc Echocardiogr. 2007;20(7):787–805.

    Article  PubMed  Google Scholar 

  89. American College of Cardiology Foundation Appropriate Use Criteria Task Force et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr. 2011;24(3):229–67.

    Article  Google Scholar 

  90. Mertz L. Ultrasound? Fetal monitoring? Spectrometer? There’s an app for that!: biomedical smart phone apps are taking healthcare by storm. IEEE Pulse. 2012;3(2):16–21.

    Article  PubMed  Google Scholar 

  91. Crofts G, Padman R, Maharaja N. Toward image analysis and decision support for ultrasound technology. Stud Health Technol Inform. 2013;192:1088.

    PubMed  Google Scholar 

  92. Torbicki A, Tramarin R, Morpurgo M. Role of echo/Doppler in the diagnosis of pulmonary embolism. Clin Cardiol. 1992;15(11):805–10.

    Article  CAS  PubMed  Google Scholar 

  93. Lau G, Ther G, Swanevelder J. Echo rounds: McConnell’s sign in acute pulmonary embolism. Anesth Analg. 2013;116(5):982–5.

    Article  PubMed  Google Scholar 

  94. McConnell MV, et al. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78(4):469–73.

    Article  CAS  PubMed  Google Scholar 

  95. Casazza F, et al. Regional right ventricular dysfunction in acute pulmonary embolism and right ventricular infarction. Eur J Echocardiogr. 2005;6(1):11–4.

    Article  PubMed  Google Scholar 

  96. Cohen R, et al. Echocardiographic findings in pulmonary embolism: an important guide for the management of the patient. World J Cardiovasc Dis. 2012;2:161–4.

    Article  Google Scholar 

  97. Pruszczyk P, et al. Noninvasive diagnosis of suspected severe pulmonary embolism: transesophageal echocardiography vs spiral CT. Chest. 1997;112(3):722–8.

    Article  CAS  PubMed  Google Scholar 

  98. Nazeyrollas P, et al. Use of transthoracic Doppler echocardiography combined with clinical and electrocardiographic data to predict acute pulmonary embolism. Eur Heart J. 1996;17(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  99. Vaid U, et al. Poor positive predictive value of McConnell’s sign on transthoracic echocardiography for the diagnosis of acute pulmonary embolism. Hosp Pract (1995). 2013;41(3):23–7.

    Article  Google Scholar 

  100. Joy J, Cooke I, Love M. Is ultrasound safe? Obstet Gynaecol. 2006;8(4):222–7.

    Article  Google Scholar 

  101. Eeg KR, et al. Single center experience with application of the ALARA concept to serial imaging studies after blunt renal trauma in children—is ultrasound enough? J Urol. 2009;181(4):1834–40 (discussion 1840).

    Article  PubMed  Google Scholar 

  102. Toms DA. The mechanical index, ultrasound practices, and the ALARA principle. J Ultrasound Med. 2006;25(4):560–1 (author reply 561–2).

    PubMed  Google Scholar 

  103. Canty DJ, et al. The impact of pre-operative focused transthoracic echocardiography in emergency non-cardiac surgery patients with known or risk of cardiac disease. Anaesthesia. 2012;67(7):714–20.

    Article  CAS  PubMed  Google Scholar 

  104. Lockhart ME, et al. The sonographer practitioner: one piece to the radiologist shortage puzzle. J Ultrasound Med. 2003;22(9):861–4.

    PubMed  Google Scholar 

  105. Walvoord KH. Understanding sonographer burnout. J Diagn Med Sonogr. 2006;22:200–5.

    Article  Google Scholar 

  106. Ferraioli G, Meloni MF. Sonographic training program at a district hospital in a developing country: work in progress. AJR Am J Roentgenol. 2007;189(3):W119–22.

    Article  PubMed  Google Scholar 

  107. Witt S. the sonographer shortage: a misguided debate or the real deal? J Am Soc Echocardiogr. 2005;18:A25–6.

    Article  Google Scholar 

  108. Scholten C, et al. Hand-held miniaturized cardiac ultrasound instruments for rapid and effective bedside diagnosis and patient screening. J Eval Clin Pract. 2005;11(1):67–72.

    Article  PubMed  Google Scholar 

  109. Adams MS. Teaching TEE for use in the operating room: where are things now…and where are we going? J Am Soc Echocardiogr. 2012;25(6):17A–8A.

    PubMed  Google Scholar 

  110. Nazerian P, et al. Diagnostic performance of emergency transthoracic focus cardiac ultrasound in suspected acute type A aortic dissection. Intern Emerg Med. 2014;9:665–70.

    Article  PubMed  Google Scholar 

  111. Hoffmann B, Gullett JP. Bedside transthoracic sonography in suspected pulmonary embolism: a new tool for emergency physicians. Acad Emerg Med. 2010;17(9):e88–93.

    Article  PubMed  Google Scholar 

  112. American Institute of Ultrasound in. M., R. American College of, and U. Society of Radiologists in, AIUM practice guideline for the performance of peripheral arterial ultrasound examinations using color and spectral doppler imaging. J Ultrasound Med. 2014;33(6):1111–21.

    Article  Google Scholar 

  113. Mustapha JA, et al. Comparison between angiographic and arterial duplex ultrasound assessment of tibial arteries in patients with peripheral arterial disease: on behalf of the Joint Endovascular and Non-Invasive Assessment of LImb Perfusion (JENALI) Group. J Invasive Cardiol. 2013;25(11):606–11.

    PubMed  Google Scholar 

  114. Liu YT, Alsaawi A, Bjornsson HM. Ultrasound-guided peripheral venous access: a systematic review of randomized-controlled trials. Eur J Emerg Med. 2014;21(1):18–23.

    PubMed  Google Scholar 

  115. Stawicki SP, Hoey BA. Lower extremity arterial thrombosis following sonographically guided thrombin injection of a femoral pseudoaneurysm. J Clin Ultrasound. 2007;35(2):88–93.

    Article  PubMed  Google Scholar 

  116. Stawicki SP, et al. Vena cava filters: a synopsis of complications and related topics. J Vasc Access. 2008;9(2):102–10.

    CAS  PubMed  Google Scholar 

  117. Chiles K, Nagdev A. Accidental carotid artery cannulation detected by bedside ultrasound. West J Emerg Med. 2011;12(1):100–1.

    PubMed Central  PubMed  Google Scholar 

  118. Hyman BN. Doppler sonography: a bedside noninvasive method for assessment of carotid artery disease. Am J Ophthalmol. 1974;77(2):227–31.

    Article  CAS  PubMed  Google Scholar 

  119. Zierler BK. Screening for acute DVT: optimal utilization of the vascular diagnostic laboratory. Semin Vasc Surg. 2001;14(3):206–14.

    Article  CAS  PubMed  Google Scholar 

  120. Magazzini S, et al. Duplex ultrasound in the emergency department for the diagnostic management of clinically suspected deep vein thrombosis. Acad Emerg Med. 2007;14(3):216–20.

    Article  PubMed  Google Scholar 

  121. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressures from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.

    Article  CAS  PubMed  Google Scholar 

  122. Otto CM. Textbook of clinical echocardiography. 3rd ed. Philadelphia: W. B. Saunders; 2004.

    Google Scholar 

Download references

Conflict of interest

The following authors of this manuscript: Nicholas Kelly, Rogette Esteve, Thomas J. Papadimos, Richard P. Sharpe, Scott A. Keeney, Robert DeQuevedo, Marc Portner, David P. Bahner, and Stanislaw P. Stawicki declare that they have no conflict of interest related to this work.

Compliance with ethical requirements

This work is in compliance with ethical requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Stawicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, N., Esteve, R., Papadimos, T.J. et al. Clinician-performed ultrasound in hemodynamic and cardiac assessment: a synopsis of current indications and limitations. Eur J Trauma Emerg Surg 41, 469–480 (2015). https://doi.org/10.1007/s00068-014-0492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-014-0492-6

Keywords

Navigation