Skip to main content
Log in

Epikardiales Fett

Bildgebung und Bedeutung für Erkrankungen des kardiovaskulären Systems

Epicardial fat

Imaging and implications for diseases of the cardiovascular system

  • Übersichtsarbeit
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Fett wird seit der Entdeckung des ob-Gen-Produkts Leptin als endokrines Organ angesehen. Insbesondere dem epikardialen Fett ist in den letzten Jahren vermehrte Aufmerksamkeit geschenkt worden. Das epikardiale Fett nimmt Aufgaben im Fettmetabolismus wahr, jedoch werden ihm auch schädliche parakrine, autokrine und systemische Wirkungen zugeschrieben. Die bildmorphologische Bestimmung des epikardialen Fettvolumens gelingt mittels der Echokardiographie, der Computertomographie oder der Magnetresonanztomographie. In diesem Review sollen zunächst grundlegende Betrachtungen der Physiologie und Pathophysiologie des epikardialen Fetts skizziert werden. Der Schwerpunkt des Reviews liegt dann auf der Vorstellung der Messmethoden des epikardialen Fetts mittels der einzelnen Bildgebungsmodalitäten und einem Literaturüberblick der Assoziationen des epikardialen Fetts zu Erkrankungen des kardiovaskulären Systems wie dem metabolischen Syndrom, der Herzinsuffizienz und der koronaren Herzkrankheit.

Abstract

Since the discovery of the obese (ob) gene product leptin, fat has been considered an endocrine organ. Especially epicardial fat has gained increasing attention in recent years. The epicardial fat plays a major role in fat metabolism; however, harmful properties have also been reported. Echocardiography, computed tomography and cardiac magnetic resonance imaging are the non-invasive tools used to measure epicardial fat volume. This review briefly introduces the basic physiological and pathophysiological considerations concerning epicardial fat. The main issue of this review is the presentation of non-invasive measurement techniques of epicardial fat using various imaging modalities and a literature overview of associations between epicardial fat and common cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  2. Barinaga M (1995) „Obese“ protein slims mice. Science 269:475–476

    Article  CAS  PubMed  Google Scholar 

  3. Lönnqvist F, Arner P, Nordfors L, Schalling M (1995) Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1:950–953

    Article  PubMed  Google Scholar 

  4. Hervey GR (1959) The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 145:336–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hassan M, Latif N, Yacoub M (2012) Adipose tissue: friend or foe? Nat Rev Cardiol 9:689–702

    Article  CAS  PubMed  Google Scholar 

  6. Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease. J Endocrinol 216:T17–T36

    Article  CAS  PubMed  Google Scholar 

  7. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64:355–365

    CAS  Google Scholar 

  8. Lidell ME, Enerbäck S (2010) Brown adipose tissue – a new role in humans? Nat Rev Endocrinol 6:319–325

    Article  PubMed  Google Scholar 

  9. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  CAS  PubMed  Google Scholar 

  10. Ho E, Shimada Y (1978) Formation of the epicardium studied with the scanning electron microscope. Dev Biol 66:579–585

    Article  CAS  PubMed  Google Scholar 

  11. Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22:1311–1319

    Article  PubMed  Google Scholar 

  12. Lachman N, Syed FF, Habib A et al (2010) Correlative anatomy for the electrophysiologist, Part I: the pericardial space, oblique sinus, transverse sinus. J Cardiovasc Electrophysiol 21:1421–1426

    Article  PubMed  Google Scholar 

  13. Shirani J, Berezowski K, Roberts WC (1995) Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage. Am J Cardiol 76:414–418

    Article  CAS  PubMed  Google Scholar 

  14. Doesch C, Haghi D, Fluchter S et al (2010) Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson 12:40

    Article  PubMed Central  PubMed  Google Scholar 

  15. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  PubMed  Google Scholar 

  16. Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8:253–261

    Article  CAS  PubMed  Google Scholar 

  17. Reiner L, Mazzoleni A, Rodriguez FL (1955) Statistical analysis of the epicardial fat weight in human hearts. AMA Arch Pathol 60:369–373

    CAS  PubMed  Google Scholar 

  18. Corradi D, Maestri R, Callegari S et al (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13:313–316

    Article  PubMed  Google Scholar 

  19. Tansey DK, Aly Z, Sheppard MN (2005) Fat in the right ventricle of the normal heart. Histopathology 46:98–104

    Article  CAS  PubMed  Google Scholar 

  20. Iacobellis G, Assael F, Ribaudo MC et al (2003) Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 11:304–310

    Article  PubMed  Google Scholar 

  21. Iacobellis G, Barbaro G (2008) The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 40:442–445

    Article  CAS  PubMed  Google Scholar 

  22. Marchington JM, Pond CM (1990) Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 14:1013–1022

    CAS  PubMed  Google Scholar 

  23. Paolisso G, Gualdiero P, Manzella D et al (1997) Association of fasting plasma free fatty acid concentration and frequency of ventricular premature complexes in nonischemic non-insulin-dependent diabetic patients. Am J Cardiol 80:932–937

    Article  CAS  PubMed  Google Scholar 

  24. Sai E, Shimada K, Yokoyama T et al (2013) Association between myocardial triglyceride content and cardiac function in healthy subjects and endurance athletes. PLoS One 8:e61604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee KT, Tang PW, Tsai WC et al (2013) Differential effects of central and peripheral fat tissues on the delayed rectifier K(+) outward currents in cardiac myocytes. Cardiology 125:118–124

    Article  PubMed  Google Scholar 

  26. Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity 16:887–892

    Article  PubMed  Google Scholar 

  27. Chaowalit N, Somers VK, Pellikka PA et al (2006) Subepicardial adipose tissue and the presence and severity of coronary artery disease. Atherosclerosis 186:354–359

    Article  CAS  PubMed  Google Scholar 

  28. Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G (2013) Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol 111:73–78

    Article  PubMed  Google Scholar 

  29. Horowitz MS, Schultz CS, Stinson EB et al (1974) Sensitivity and specificity of echocardiographic diagnosis of pericardial effusion. Circulation 50:239–247

    Article  CAS  PubMed  Google Scholar 

  30. Ristić AD, Wagner HJ, Maksimović R, Maisch B (2013) Epicardial halo phenomenon: a guide for pericardiocentesis? Heart Fail Rev 18:307–316

    Article  PubMed  Google Scholar 

  31. Elming MB, Lønborg J, Rasmussen T et al (2013) Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography – comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29:1401–1407

    Article  PubMed  Google Scholar 

  32. Dagvasumberel M, Shimabukuro M, Nishiuchi T et al (2012) Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: a 3-dimensional cardiac computed tomography imaging study in Japanese subjects. Cardiovasc Diabetol 11:106

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nakazato R, Shmilovich H, Tamarappoo BK et al (2011) Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr 5:172–179

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rajani R, Shmilovich H, Nakazato R et al (2013) Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr 7:125–132

    Article  PubMed Central  PubMed  Google Scholar 

  35. Barbosa JG, Figueiredo B, Bettencourt N, Tavares JMRS (2011) Towards automatic quantification of the epicardial fat in non-contrasted CT images. Comput Methods Biomech Biomed Engin 14:905–914

    Article  PubMed  Google Scholar 

  36. Flüchter S, Haghi D, Dinter D et al (2007) Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 15:870–878

    Article  PubMed  Google Scholar 

  37. Kellman P, Hernando D, Arai AE (2010) Myocardial fat imaging. Curr Cardiovasc Imaging Rep 3:83–91

    Article  PubMed Central  PubMed  Google Scholar 

  38. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  39. Alabousi A, Al-Attar S, Joy TR et al (2011) Evaluation of adipose tissue volume quantification with IDEAL fat-water separation. J Magn Reson Imaging 34:474–479

    Article  PubMed  Google Scholar 

  40. Brodsky EK, Holmes JH, Yu H, Reeder SB (2008) Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging. Magn Reson Med 59:1151–1164

    Article  PubMed  Google Scholar 

  41. Reeder SB, McKenzie CA, Pineda AR et al (2007) Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 25:644–652

    Article  PubMed  Google Scholar 

  42. Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644

    Article  PubMed  Google Scholar 

  43. Doesch C, Streitner F, Bellm S et al (2013) Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy. Obesity 21:E253–E261

    Article  PubMed  Google Scholar 

  44. Wang CP, Hsu HL, Hung WC et al (2009) Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol 70:876–882

    Article  Google Scholar 

  45. Iacobellis G, Ribaudo MC, Assael F et al (2003) Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 88:5163–5168

    Article  CAS  PubMed  Google Scholar 

  46. Okyay K, Balcioglu AS, Tavil Y et al (2008) A relationship between echocardiographic subepicardial adipose tissue and metabolic syndrome. Int J Cardiovasc Imaging 24:577–583

    Article  PubMed  Google Scholar 

  47. Shetty R, Vivek G, Naha K et al (2012) Correlation of epicardial fat and anthropometric measurements in Asian-Indians: a community based study. Avicenna J Med 2:89–93

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ormseth MJ, Lipson A, Alexopoulos N et al (2013) Association of epicardial adipose tissue with cardiometabolic risk and metabolic syndrome in patients with rheumatoid arthritis. Arthritis Care Res 65:1410–1415

    Article  CAS  Google Scholar 

  49. Sironi AM, Petz R, De Marchi D et al (2012) Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabet Med 29:622–627

    Article  CAS  PubMed  Google Scholar 

  50. Liang KW, Tsai IC, Lee WJ et al (2012) MRI measured epicardial adipose tissue thickness at the right AV groove differentiates inflammatory status in obese men with metabolic syndrome. Obesity 20:525–532

    Article  CAS  PubMed  Google Scholar 

  51. Manco M, Morandi A, Marigliano M et al (2013) Epicardial fat, abdominal adiposity and insulin resistance in obese pre-pubertal and early pubertal children. Atherosclerosis 226:490–495

    Article  CAS  PubMed  Google Scholar 

  52. Meer RW van der, Lamb HJ, Smit JWA, Roos A de (2012) MR imaging evaluation of cardiovascular risk in metabolic syndrome. Radiology 264:21–37

    Article  PubMed  Google Scholar 

  53. Nabati M, Saffar N, Yazdani J, Parsaee MS (2013) Relationship between epicardial fat measured by echocardiography and coronary atherosclerosis: a single-blind historical cohort study. Echocardiography 30:505–511

    Article  PubMed  Google Scholar 

  54. Natale F, Tedesco MA, Mocerino R et al (2009) Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiogr 10:549–555

    Article  PubMed  Google Scholar 

  55. Ahn SG, Lim HS, Joe DY et al (2008) Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94:e7

    Article  PubMed  Google Scholar 

  56. Eroglu S, Sade LE, Yildirir A et al (2009) Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 19:211–217

    Article  CAS  PubMed  Google Scholar 

  57. Sade LE, Eroglu S, Bozbaş H et al (2009) Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 204:580–585

    Article  CAS  PubMed  Google Scholar 

  58. Greif M, Becker A, Ziegler F von et al (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29:781–786

    Article  CAS  PubMed  Google Scholar 

  59. Vos AM de, Prokop M, Roos CJ et al (2008) Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 29:777–783

    Article  PubMed  Google Scholar 

  60. Ito T, Suzuki Y, Ehara M et al (2012) Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol 167:2852–2858

    Article  PubMed  Google Scholar 

  61. Ito T, Nasu K, Terashima M et al (2012) The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging 13:408–415

    Article  PubMed  Google Scholar 

  62. Okada K, Ohshima S, Isobe S et al (2013) Epicardial fat volume correlates with severity of coronary artery disease in nonobese patients. J Cardiovasc Med 15:384–390

    Article  Google Scholar 

  63. Nakanishi R, Rajani R, Cheng VY et al (2011) Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis 218:363–368

    Article  CAS  PubMed  Google Scholar 

  64. Yerramasu A, Dey D, Venuraju S et al (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220:223–230

    Article  CAS  PubMed  Google Scholar 

  65. Mazurek T (2008) Peri-coronary epicardial adipose tissue affects coronary atherosclerosis in patients with acute myocardial infarction. Circulation 118:580–581

    Google Scholar 

  66. Gaborit B, Kober F, Jacquier A et al (2012) Epicardial fat volume is associated with coronary microvascular response in healthy subjects: a pilot study. Obesity 20:1200–1205

    Article  CAS  PubMed  Google Scholar 

  67. Jeong JW, Jeong MH, Yun KH et al (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 71:536–539

    Article  PubMed  Google Scholar 

  68. Yun KH, Rhee SJ, Yoo NJ et al (2009) Relationship between the echocardiographic epicardial adipose tissue thickness and serum adiponectin in patients with angina. J Cardiovasc Ultrasound 17:121–126

    Article  PubMed Central  PubMed  Google Scholar 

  69. Park JS, Choi BJ, Choi SY et al (2013) Echocardiographically measured epicardial fat predicts restenosis after coronary stenting. Scand Cardiovasc J 47:297–302

    Article  PubMed  Google Scholar 

  70. Shemirani H, Khoshavi M (2012) Correlation of echocardiographic epicardial fat thickness with severity of coronary artery disease – an observational study. Anadolu Kardiyol Derg 12:200–205

    PubMed  Google Scholar 

  71. Mustelier JV, Rego JOC, González AG et al (2011) Echocardiographic parameters of epicardial fat deposition and its relation to coronary artery disease. Arq Bras Cardiol 97:122–129

    Article  PubMed  Google Scholar 

  72. Nelson MR, Mookadam F, Thota V et al (2011) Epicardial fat: an additional measurement for subclinical atherosclerosis and cardiovascular risk stratification? J Am Soc Echocardiogr 24:339–345

    Article  PubMed  Google Scholar 

  73. Cheng VY, Dey D, Tamarappoo B et al (2010) Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging 3:352–360

    Article  PubMed Central  PubMed  Google Scholar 

  74. Shmilovich H, Dey D, Cheng VY et al (2011) Threshold for the upper normal limit of indexed epicardial fat volume: derivation in a healthy population and validation in an outcome-based study. Am J Cardiol 108:1680–1685

    Article  PubMed Central  PubMed  Google Scholar 

  75. Bettencourt N, Toschke AM, Leite D et al (2012) Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol 158:26–32

    Article  CAS  PubMed  Google Scholar 

  76. Dey D, Wong ND, Tamarappoo B et al (2010) Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis 209:136–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613

    Article  PubMed  Google Scholar 

  78. Sarin S, Wenger C, Marwaha A et al (2008) Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol 102:767–771

    Article  PubMed  Google Scholar 

  79. Alexopoulos N, McLean DS, Janik M et al (2010) Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210:150–154

    Article  CAS  PubMed  Google Scholar 

  80. Schlett CL, Ferencik M, Kriegel MF et al (2012) Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 222:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Oka T, Yamamoto H, Ohashi N et al (2012) Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol 161:45–49

    Article  PubMed  Google Scholar 

  82. Ding J, Kritchevsky SB, Hsu FC et al (2008) Association between non-subcutaneous adiposity and calcified coronary plaque: a substudy of the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr 88:645–650

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Harada K, Amano T, Uetani T et al (2011) Cardiac 64-multislice computed tomography reveals increased epicardial fat volume in patients with acute coronary syndrome. Am J Cardiol 108:1119–1123

    Article  PubMed  Google Scholar 

  84. Ueno K, Anzai T, Jinzaki M et al (2009) Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions. Circ J 73:1927–1933

    Article  PubMed  Google Scholar 

  85. Liu D, Niemann M, Hu K et al (2011) Echocardiographic evaluation of systolic and diastolic function in patients with cardiac amyloidosis. Am J Cardiol 108:591–598

    Article  PubMed  Google Scholar 

  86. Ding J, Hsu FC, Harris TB et al (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90:499–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Mahabadi AA, Massaro JM, Rosito GA et al (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30:850–856

    Article  PubMed Central  PubMed  Google Scholar 

  88. Nakazato R, Dey D, Cheng VY et al (2012) Epicardial fat volume and concurrent presence of both myocardial ischemia and obstructive coronary artery disease. Atherosclerosis 221:422–426

    Article  CAS  PubMed  Google Scholar 

  89. Wang TD, Lee WJ, Shih FY et al (2010) Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis 213:279–287

    Article  CAS  PubMed  Google Scholar 

  90. Iwasaki K, Matsumoto T, Aono H et al (2011) Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol 34:166–171

    Article  PubMed  Google Scholar 

  91. Djaberi R, Schuijf JD, Werkhoven JM van et al (2008) Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol 102:1602–1607

    Article  PubMed  Google Scholar 

  92. Sicari R, Sironi AM, Petz R et al (2011) Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr 24:1156–1162

    Article  PubMed  Google Scholar 

Download references

Anmerkung

Diese Arbeit wurde unterstützt durch die Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. (Stipendium, M.N.).

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Niemann, H. Alkadhi, A. Gotschy, S. Kozerke und R. Manka geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemann, M., Alkadhi, H., Gotschy, A. et al. Epikardiales Fett. Herz 40 (Suppl 3), 282–290 (2015). https://doi.org/10.1007/s00059-014-4146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4146-6

Schlüsselwörter

Keywords

Navigation