Skip to main content
Log in

Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Recent studies have suggested that pericardial adipose tissue (PAT) located in close vicinity to the epicardial coronary arteries may play a role in the development of coronary artery disease. PAT has primarily been measured with cardiac magnetic resonance imaging (CMRI) or with non-contrast cardiac multidetector computered tomography (MDCT) images. The aim of this study was to validate contrast MDCT derived measures of total PAT volume by a comparison to CMRI. In 52 patients, aged 60 years (34–81 years), Body Mass Index 28 kg/m2 (18–39), and with stable ischemic heart disease, paired MDCT and CMRI scans were performed. The optimal fit for measuring PAT using contrast MDCT was developed and validated by the corresponding measures on CMRI. The median for PAT volume in patients was 175 ml (SD 68) and 153 ml (SD 60) measured by MDCT and CMRI respectively. Four different attenuation values were tested, and the smallest difference in PAT was noted when −30 to −190 HU were used in MDCT measures. The median difference between MDCT and CMRI for the assessment of PAT was 9 ml (SD 50) suggesting a reasonable robust method for the assessment of PAT in a large-scale study. Pericardial adipose tissue can be measured on standard coronary CT angiography images with a reasonable degree of accuracy when compared to CMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613

    Article  PubMed  Google Scholar 

  2. Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S et al (2001) Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157:203–209

    Article  PubMed  CAS  Google Scholar 

  3. Nakanishi R, Rajani R, Cheng VY, Gransar H, Nakazato R, Shmilovich H et al (2011) Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis 218:363–368

    Article  PubMed  CAS  Google Scholar 

  4. Harada K, Amano T, Uetani T, Tokuda Y, Kitagawa K, Shimbo Y et al (2011) Cardiac 64-multislice computed tomography reveals increased epicardial fat volume in patients with acute coronary syndrome. Am J Cardiol 108:1119–1123

    Article  PubMed  Google Scholar 

  5. Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8:253–261

    Article  PubMed  CAS  Google Scholar 

  6. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  7. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC et al (2009) Pericardial adipose tissue determined by dual source ct is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29:781–786

    Article  PubMed  CAS  Google Scholar 

  8. Gorter PM, Van Lindert ASR, De Vos AM, Meijs MFL, Van der Graaf Y, Doevendans PA et al (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197:896–903

    Article  PubMed  CAS  Google Scholar 

  9. Dey D, Suzuki Y, Suzuki S, Ohba M, Slomka PJ, Polk D et al (2008) Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol 43:145–153

    Article  PubMed  Google Scholar 

  10. Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY et al (2010) Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging 3:1104–1112

    Article  PubMed  Google Scholar 

  11. Abate N, Burns D, Peshock RM, Garg A, Grundy SM (1994) Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res 35:1490–1496

    PubMed  CAS  Google Scholar 

  12. Lønborg JT, Engstrøm T, Møller JE, Ahtarovski KA, Kelbæk H, Holmvang L et al (2012) Left atrial volume and function in patients following ST elevation myocardial infarction and the association with clinical outcome: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jes118

    Google Scholar 

  13. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  PubMed  CAS  Google Scholar 

  14. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  PubMed  Google Scholar 

  15. Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE et al (2005) Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol 40:97–101

    Article  PubMed  Google Scholar 

  16. Rössner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P et al (1990) Adipose tissue determinations in cadavers–a comparison between cross-sectional planimetry and computed tomography. Int J Obes 14:893–902

    PubMed  Google Scholar 

  17. Schlett CL, Ferencik M, Kriegel MF, Bamberg F, Ghoshhajra BB, Joshi SB et al (2012) Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 222:129–134

    Article  PubMed  CAS  Google Scholar 

  18. Gorter PM, De Vos AM, Van der Graaf Y, Stella PR, Doevendans PA, Meijs MFL et al (2008) Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 102:380–385

    Article  PubMed  CAS  Google Scholar 

  19. Sjöström L, Kvist H, Cederblad A, Tylén U (1986) Determination of total adipose tissue and body fat in women by computed tomography, 40 K, and tritium. Am J Physiol 250:E736–E745

    PubMed  Google Scholar 

  20. Yong HS, Kim EJ, Seo HS, Kang E-Y, Kim YK, Woo OH et al (2010) Pericardial fat is more abundant in patients with coronary atherosclerosis and even in the non-obese patients: evaluation with cardiac CT angiography. Int J Cardiovasc Imaging 26(Suppl 1):53–62

    Article  PubMed  Google Scholar 

  21. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R et al (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220:223–230

    Article  PubMed  CAS  Google Scholar 

  22. Shmilovich H, Dey D, Cheng VY, Rajani R, Nakazato R, Otaki Y et al (2011) Threshold for the upper normal limit of indexed epicardial fat volume: derivation in a healthy population and validation in an outcome-based study. Am J Cardiol 108:1680–1685

    Article  PubMed  Google Scholar 

  23. Nakazato R, Rajani R, Cheng VY, Shmilovich H, Nakanishi R, Otaki Y et al (2012) Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis 220:139–144

    Article  PubMed  CAS  Google Scholar 

  24. Dey D, Nakazato R, Li D, Berman DS (2012) Epicardial and thoracic fat—Noninvasive measurement and clinical implications. Cardiovasc Diagn Ther 2:85–93

    Google Scholar 

  25. Positano V, Gastaldelli A, Sironi AM, Santarelli MF, Lombardi M, Landini L (2004) An accurate and robust method for unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 20:684–689

    Article  PubMed  Google Scholar 

  26. Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF et al (2009) Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson 11:15

    Article  PubMed  Google Scholar 

  27. Gaborit B, Kober F, Jacquier A, Moro PJ, Flavian A, Quilici J et al (2012) Epicardial fat volume is associated with coronary microvascular response in healthy subjects: a pilot study. Obesity (Silver Spring) 20:1200–1205

    Article  CAS  Google Scholar 

  28. Gaborit B, Kober F, Jacquier A, Moro PJ, Cuisset T, Boullu S et al (2012) Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond) 36:422–430

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Bayer Elming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elming, M.B., Lønborg, J., Rasmussen, T. et al. Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29, 1401–1407 (2013). https://doi.org/10.1007/s10554-013-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0218-6

Keywords

Navigation