Skip to main content

Advertisement

Log in

Novel 2-Arylbenzimidazole derivatives as multi-targeting agents to treat Alzheimer’s disease

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This study describes the synthesis, pharmacological evaluation, including acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibition, amyloid beta (Aβ) antiaggregation, and neuroprotective effects, as well as molecular modeling of novel 2-(4-substituted phenyl)-1H-benzimidazole derivatives. These derivatives were synthesized by cyclization of o-phenylenediamines with sodium hydroxy(4-substituted phenyl)methanesulfonate salts. In vitro studies indicated that the most of the target compounds showed remarkable inhibitory activity against BChE (IC50: 13.60–95.44 µM). Among them, 3d and 3g-i also exhibited high selectivity (SI ≥ 35.7) for BChE with IC50 values 39.56, 13.60, 14.45, and 15.15 µM, respectively. According to the molecular modeling studies, it may be assumed that the compounds are able to reach the catalytic site of BChE but not that of AChE. The compounds showing BChE inhibitory effects were subsequently examined for their Aβ-antiaggregating and neuroprotective activities. Among the compounds, 3d inhibited the Aβ1–40 aggregation and demonstrated significant neuroprotection against H2O2-induced and Aβ1–40-induced cell death. Collectively, compound 3d showed the best multifunctional activity (BChE; IC50 = 39.56 µM, SI > 126; Aβ self-mediated aggregation; 67.78% at 100 μM; H2O2-induced cytotoxicity with cell viability of 98% and Aβ1-40-induced cytotoxicity with cell viability of 127%). All these results suggested that 2-(4-(4-methylpiperidin-1-yl)phenyl)-1H-benzo[d]imidazole (compound 3d) could be a promising multi-target lead candidate against Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alp M, Goker AH, Altanlar N (2014) Synthesis and antimicrobial activity of novel 2-[4-(1H-benzimidazol-1-yl)phenyl]-1H-benzimidazoles. Turk J Chem 38:152–156

    Article  CAS  Google Scholar 

  • Alpan AS, Gunes HS, Topcu Z (2007) 1H-Benzimidazole derivatives as mammalian DNA topoisomerase I inhibitors. Acta Biochim Pol 54:561–565

    CAS  PubMed  Google Scholar 

  • Alpan AS, Parlar S, Carlino L, Tarikogullari AH, Alptuzun V, Gunes HS (2013) Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 21:4928–4937

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36:375–399

    Article  CAS  PubMed  Google Scholar 

  • Bansal Y, Silakari O (2012) The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 20(21):6208–6236

    Article  CAS  PubMed  Google Scholar 

  • Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R (2001) C-H center dot center dot center dot pi-interactions in proteins. J Mol Biol 307:357–377

    Article  CAS  PubMed  Google Scholar 

  • Bullock R, Touchon J, Bergman H, Gambina G, He Y, Rapatz G, Nagel J, Lane R (2005) Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Curr Med Res Opin 21:1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Ono M, Kimura H, Kawashima H, Liu BL, Saji H (2011) Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of beta-amyloid plaques in Alzheimer’s disease. Nucl Med Biol 38:313–320

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2004) Drug therapy – Alzheimer’s disease. New Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  • Darvesh S, Reid GA (2016) Reduced fibrillar beta-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact 259(B):307–312

    Article  CAS  PubMed  Google Scholar 

  • Dwane S, Durack E, Kiely PA (2013) Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res Notes 6:366–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28:515–522

    Article  CAS  PubMed  Google Scholar 

  • Gouras GK, Olsson TT, Hansson O (2015) Beta amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 12(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Harada R, Okamura N, Furumoto S, Yoshikawa T, Arai H, Yanai K, Kudo Y (2014) Use of a benzimidazole derivative BF-188 in fluorescence multispectral imaging for selective visualization of tau protein fibrils in the Alzheimer’s disease brain. Mol Imaging Biol 16:19–27

    Article  PubMed  Google Scholar 

  • Holmes C, Ballard C, Lehmann D, Smith AD, Beaumont H, Day IN, Khan MN, Lovestone S, McCulley M, Morris CM, Munoz DG, O’Brien K, Russ C, Del Ser T, Warden D (2005) Rate of progression of cognitive decline in Alzheimer’s disease: effect of butyrylcholinesterase K gene variation. J Neurol Neurosurg Psychiatry 76:640–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WJ, Zhang X, Chen WW (2015) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522

    Google Scholar 

  • Jadhav GR, Shaikh MU, Kale RP, Gill CH (2009) Ammonium metavanadate: a novel catalyst for synthesis of 2-substituted benzimidazole derivatives. Chinese Chem Lett 20:292–295

    Article  CAS  Google Scholar 

  • Karran E, Mercken M, Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  • Kim KD, Cho ES, Um HD (2000) Caspase-dependent and -independent events in apoptosis induced by hydrogen peroxide. Exp Cell Res 257(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90(17):7951–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manev H, Chen H, Dzitoyeva S, Manev R (2011) Cyclooxygenases and 5-lipoxygenase in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 35:315–319

    Article  CAS  PubMed  Google Scholar 

  • Meciarova M, Toma S, Magdolen P (2003) Ultrasound effect on the aromatic nucleophilic substitution reactions on some haloarenes. Ultrason Sonochem 10:265–270

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Muchmore SW, Edmunds JJ, Stewart KD, Hajduk PJ (2010) Cheminformatic tools for medicinal chemists. J Med Chem 53:4830–4841

    Article  CAS  PubMed  Google Scholar 

  • Mullard A (2017) Alzheimer amyloid hypothesis lives on. Nat Rev Drug Discov 16:3–5

    Article  CAS  Google Scholar 

  • Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    Article  CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry E, Perry R, Blessed G, Tomlinson B (1978) Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol 4:273–277

    Article  CAS  PubMed  Google Scholar 

  • Reid GA, Darvesh S (2015) Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 298:424–435

    Article  CAS  PubMed  Google Scholar 

  • Secci D, Bolasco A, D’Ascenzio M, Sala F, Yáñez M, Carradori S (2012) Conventional and microwave-assisted synthesis of benzimidazole derivatives and their in vitro inhibition of human cyclooxygenase. J Heterocyclic Chem 49:1187–1195

    Article  CAS  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Chen WD, Wang YD (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221–229

    PubMed  PubMed Central  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Ganguly S (2015) Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: a mini-review. Eur J Med Chem 97:419–443

    Article  CAS  PubMed  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, Osman H, Masand VH (2013) Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg Chem 49:33–39

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zheng Z, Yang M, Wang L, Tian Y, Wu J, Zhou H, Xu H, Wu Z (2013) Photon-induced intramolecular charge transfer with the influence of D/A group and mode: optical physical properties and bio-imaging. J Mater Chem C 1:7026–7033

    Article  CAS  Google Scholar 

  • Zhu JM, Wu CF, Li XB, Wu GS, Xie S, Hu QN, Deng ZX, Zhu MX, Luo HR, Hong XC (2013) Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg Med Chem 21:4218–4224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Turkish Scientific Research Institution (TUBITAK, 114S374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oya Unsal-Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unsal-Tan, O., Ozadali-Sari, K., Ayazgok, B. et al. Novel 2-Arylbenzimidazole derivatives as multi-targeting agents to treat Alzheimer’s disease. Med Chem Res 26, 1506–1515 (2017). https://doi.org/10.1007/s00044-017-1874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1874-1

Keywords

Navigation