Skip to main content
Log in

Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Agonists/partial agonists of peroxisome proliferators-activated receptor gamma (PPARγ) are used in controlling type 2 diabetes mellitus (T2DM). We have identified a PPARγ agonist/partial agonist from traditional Indian medicinal plants for controlling T2DM using in silico and in vivo models. Molecular modeling and docking approaches were used in this study to identify potential plant compounds that suitably bound with PPARγ. Well-docked complex structures developed from molecular docking analysis were carefully chosen by molinspiration bioavailability and docking energy levels. Based on these results, the best docking poses were produced from the ligand-binding domain and their binding affinity was confirmed. Consequently, the plant molecule nymphayol was retrieved as a final candidate. Nymphayol was also studied for its effect on oral glucose tolerance, lipid profile, aminotransferases levels, and transcript level of PPARγ using in vivo biochemical analysis. Nymphayol showed well-docked complex with ARG 288 on ligand-binding domain of PPARγ (PDB ID: 2PRG). In molecular study, nymphayol has significantly increased PPARγ mRNA expression in adipose tissue compared to the diabetic control group. The effects of nymphayol on oral glucose tolerance, lipid profile, and aminotransferases level also showed significantly positive effects. These results indicated that nymphayol can be utilized as a potential candidate for developing novel partial agonist and antidiabetic drug targetting PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T2DM:

type 2 diabetes mellitus

PPAR α, β, and γ:

peroxisome proliferators-activated receptor alpha, beta and gamma

ADME/T:

absorption, distribution, metabolism, excretion and toxicity

ADT:

AutoDockTool

PDB:

Protein Data Bank

HBD:

hydrogen bond donor

HBA:

hydrogen bond acceptor

STZ:

streptozotocin

TZDs:

thiazolidinediones

FBG:

fasting blood glucose

TC:

total cholesterol

TG:

triglycerides

FFA:

free fatty acids

OGTT:

oral glucose tolerance test

HDL:

high-density lipoprotein

LDL:

low-density lipoprotein

VLDL:

very low-density lipoprotein

References

  • Agnihotri S, Narula R, Joshi K, Rana S, Singh M (2012) In silico modeling of ligand molecule for non structural 3 (NS3) protein target of flaviviruses. Bioinformation 8:123–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed I, Lakhani MS, Gillett M, John A, Raza H (2001) Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 51:155–161

    Article  CAS  PubMed  Google Scholar 

  • Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  • Ayyanar M, Ignacimuthu S (2005) Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J Ethnopharmacol 102:246–255

    Article  CAS  PubMed  Google Scholar 

  • Ayyanar M, Subash-Babu P, Ignacimuthu S (2013) Syzygium cumini (L.) Skeels., a novel therapeutic agent for diabetes: folk medicinal and pharmacological evidences. Complement Ther Med 21:232–243

    Article  PubMed  Google Scholar 

  • Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, Kadir KK (2012) Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats. J Nat Med 66:333–342

    Article  PubMed  Google Scholar 

  • Balamurugan R, Stalin A, Ignacimuthu S (2012) Molecular docking of gamma-sitosterol with some targets related to diabetes. Eur J Med Chem 47:38–43

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  • Braun JE, Severson DL (1992) Lipoprotein lipase release from cardiac myocytes is increased by decavanadate but not insulin. Am J Physiol 262:E663–670

    CAS  PubMed  Google Scholar 

  • Cho MC, Lee DH, Kim EJ, Lee JY, Kang JW, Song JH, Chong Y, Kim Y, Hong JT, Yoon DY (2011) Novel PPARgamma partial agonists with weak activity and no cytotoxicity; identified by a simple PPARgamma ligand screening system. Mol Cell Biochem 358:75–83

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Park Y, Lee HS, Yang Y, Yoon S (2010) 1,3-diphenyl-1H-pyrazole derivatives as a new series of potent PPARgamma partial agonists. Bioorg Med Chem 18:8315–8323

    Article  CAS  PubMed  Google Scholar 

  • Christensen KB, Minet A, Svenstrup H, Grevsen K, Zhang H, Schrader E, Rimbach G, Wein S, Wolffram S, Kristiansen K, Christensen LP (2009) Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake. Phytother Res 23:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • de Koning EJ, Bonner-Weir S, Rabelink TJ (2008) Preservation of beta-cell function by targeting beta-cell mass. Trends Pharmacol Sci 29:218–227

    Article  PubMed  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    CAS  PubMed  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118

    Article  Google Scholar 

  • Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13:624–629

    Article  CAS  PubMed  Google Scholar 

  • Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chem Biol Interact 182:67–72

    Article  CAS  PubMed  Google Scholar 

  • Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta 46:105–111

    Article  CAS  PubMed  Google Scholar 

  • Fleury P, Weber R, Eberhard R (1953) Determination of urinary albumin by the biuret method. Ann Biol Clin (Paris) 11:61–62

    CAS  Google Scholar 

  • Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65:261–311

    Article  CAS  PubMed  Google Scholar 

  • Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  CAS  PubMed  Google Scholar 

  • Gandhi GR, Ignacimuthu S, Paulraj MG (2012) Hypoglycemic and beta-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R (2013) Insulin sensitization via partial agonism of PPARgamma and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta 1830:2243–2255

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vallve S, Palau J (1998) Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens. Mol Biol Evol 15:665–682

    Article  CAS  PubMed  Google Scholar 

  • Goa J (1953) A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest 5:218–222

    Article  CAS  PubMed  Google Scholar 

  • Guasch L, Sala E, Castell-Auvi A, Cedo L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardevol A, Valls C, Pujadas G, Garcia-Vallve S (2012a) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PloS ONE 7:e50816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guasch L, Sala E, Mulero M, Valls C, Salvado MJ, Pujadas G, Garcia-Vallve S (2013) Identification of PPARgamma partial agonists of natural origin (II): in silico prediction in natural extracts with known antidiabetic activity. PloS ONE 8:e55889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guasch L, Sala E, Valls C, Blay M, Mulero M, Arola L, Pujadas G, Garcia-Vallve S (2011) Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 25:717–728

    Article  CAS  PubMed  Google Scholar 

  • Guasch L, Sala E, Valls C, Mulero M, Pujadas G, Garcia-Vallve S (2012b) Development of docking-based 3D-QSAR models for PPARgamma full agonists. J Mol Graph Model 36:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hultcrantz R, Glaumann H, Lindberg G, Nilsson LH (1986) Liver investigation in 149 asymptomatic patients with moderately elevated activities of serum aminotransferases. Scand J Gastroenterol 21:109–113

    Article  CAS  PubMed  Google Scholar 

  • Izzo C, Grillo F, Murador E (1981) Improved method for determination of high-density-lipoprotein cholesterol I. Isolation of high-density lipoproteins by use of polyethylene glycol 6000. Clin Chem 27:371–374

    CAS  PubMed  Google Scholar 

  • Jermendy G (2007) PPARγ agonists-antidiabetic drugs with a potential role in the treatment of diseases other than diabetes. Diabetes Res Clin Pract 78:29–39

    Article  Google Scholar 

  • Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, Chen X (2011) Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J 25:754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesari AN, Kesari S, Singh SK, Gupta RK, Watal G (2007) Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J Ethnopharmacol 112:305–311

    Article  PubMed  Google Scholar 

  • Kind PR, King EJ (1954) Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 7:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouskoumvekaki I, Petersen RK, Fratev F, Taboureau O, Nielsen TE, Oprea TI, Sonne SB, Flindt EN, Jonsdottir SO, Kristiansen K (2013) Discovery of a novel selective PPARgamma ligand with partial agonist binding properties by integrated in silico/in vitro work flow. J Chem Inf Model 53:923–937

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Cha BY, Saito K, Yamakawa H, Choi SS, Yamaguchi K, Yonezawa T, Teruya T, Nagai K, Woo JT (2010) Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem Pharmacol 79:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Lewis SN, Bassaganya-Riera J, Bevan DR (2010) Virtual screening as a technique for PPAR modulator discovery. PPAR Res 2010:861238

    Article  PubMed  Google Scholar 

  • Lopes-Virella MF, Wohltmann HJ, Mayfield RK, Loadholt CB, Colwell JA (1983) Effect of metabolic control on lipid, lipoprotein, and apolipoprotein levels in 55 insulin-dependent diabetic patients. Diabetes 32:20–25

    Article  CAS  PubMed  Google Scholar 

  • McGowan JA, Chen TC, Fragola J, Puschett JB, Rosenblatt M (1983) Parathyroid hormone: effects of the 3-34 fragment in vivo and vitro. Science 219:67–69

    Article  CAS  PubMed  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    Article  CAS  PubMed  Google Scholar 

  • Mizuno CS, Chittiboyina AG, Shah FH, Patny A, Kurtz TW, Pershadsingh HA, Speth RC, Karamyan VT, Carvalho PB, Avery MA (2010) Design, synthesis, and docking studies of novel benzimidazoles for the treatment of metabolic syndrome. J Med Chem 53:1076–1085

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    Article  CAS  PubMed  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143

    Article  CAS  PubMed  Google Scholar 

  • Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE, Lenhard JM, Hull-Ryde EA, Mohr CP, Blanchard SG, Parks DJ, Moore LB, Lehmann JM, Plunket K, Miller AB, Milburn MV, Kliewer SA, Willson TM (1999) A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci U S A 96:6102–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandikumar P, Babu NP, Ignacimuthu S (2009) Hypoglycemic and antihyperglycemic effect of Begonia malabarica Lam. in normal and streptozotocin induced diabetic rats. J Ethnopharmacol 124:111–115

    Article  CAS  PubMed  Google Scholar 

  • Passaro G, Pelli I, Passalacqua W (1953) Comparative studies on biuret and Kjeldahl methods in determination of total proteins and of protein fractions. Boll Soc Ital Biol Sper 29:2005–2007

    CAS  PubMed  Google Scholar 

  • Pferschy-Wenzig EM, Atanasov AG, Malainer C, Noha SM, KunertO, Schuster D, Heiss EH, Oberlies NH, Wagner H, Bauer R, Dirsch VM (2014) Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod 77:842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plutzky J (2003) Medicine. PPARs as therapeutic targets: reverse cardiology? Science 302:406–407

    Article  CAS  PubMed  Google Scholar 

  • Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S, Loiodice F, Fracchiolla G, Tortorella P, Laghezza A, Lavecchia A, Novellino E, Mazza F, Crestani M (2007) Insights into the mechanism of partial agonism: crystal structures of the peroxisome proliferator-activated receptor gamma ligand-binding domain in the complex with two enantiomeric ligands. J Biol Chem 282:17314–17324

    Article  CAS  PubMed  Google Scholar 

  • Puhl AC, Bernardes A, Silveira RL, Yuan J, Campos JL, Saidemberg DM, Palma MS, Cvoro A, Ayers SD, Webb P, Reinach PS, Skaf MS, Polikarpov I (2012) Mode of peroxisome proliferator-activated receptor gamma activation by luteolin. Mol Pharmacol 81:788–799

    Article  CAS  PubMed  Google Scholar 

  • Reilly SM, Lee CH (2008) PPAR delta as a therapeutic target in metabolic disease. FEBS Lett 582:26–31

    Article  CAS  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Rosalki SB, Rau D (1972) Serum-glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47

    Article  CAS  PubMed  Google Scholar 

  • Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  PubMed  Google Scholar 

  • Sharma AK, Bharti S, Goyal S, Arora S, Nepal S, Kishore K, Joshi S, Kumari S, Arya DS (2011) Upregulation of PPARgamma by Aegle marmelos ameliorates insulin resistance and beta-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytother Res 25:1457–1465

    Article  PubMed  Google Scholar 

  • Shearer BG, Billin AN (2007) The next generation of PPAR drugs: do we have the tools to find them?. Biochim Biophys Acta 1771:1082–1093

    Article  CAS  PubMed  Google Scholar 

  • Shilpa K, Sangeetha KN, Muthusamy VS, Sujatha S, Lakshmi BS (2009) Probing key targets in insulin signaling and adipogenesis using a methanolic extract of Costus pictus and its bioactive molecule, methyl tetracosanoate. Biotechnol Lett 31:1837–1841

    Article  CAS  PubMed  Google Scholar 

  • Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats. J Ethnopharmacol 91:171–175

    Article  PubMed  Google Scholar 

  • Simmonds MSJ, Howes MJR (2006) Plants used in the treatment of diabetes. In: Soumyanath A (ed.) Traditional Medicines for Modern Times: Antidiabetic Plants, pp. 19–82. CRC Press/Taylor and Francis Group, UK, vol. 6th.

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  • Stierand K, Rarey M (2010) Drawing the PDB: protein-ligand complexes in two dimensions. ACS Med Chem Lett 1:540–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subash-Babu P, Ignacimuthu S, Agastian P, Varghese B (2009) Partial regeneration of beta-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg Med Chem 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • von Knethen A, Brune B (2003) PPARgamma—an important regulator of monocyte/macrophage function. Arch Immunol Ther Exp (Warsz) 51:219–226

    Google Scholar 

  • Welters HJ, McBain SC, Tadayyon M, Scarpello JH, Smith SA, Morgan NG (2004) Expression and functional activity of PPARgamma in pancreatic beta cells. Br J Pharmacol 142:1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  • Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi K, Yamamoto K, Mochizuki Y, Nakano T, Yamada S, Tokiwa H (2010) Flexible ligand recognition of peroxisome proliferator-activated receptor-gamma (PPARgamma). Bioorg Med Chem Lett 20:3344–3347

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Indian Council of Medical Research, New Delhi, for financial assistance [Ref. No. 74/10/2012-PERS (EMS)]. The authors also acknowledge the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for its funding of this research through the Research Group project No. RGP-213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savarimuthu Ignacimuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stalin, A., Stephen Irudayaraj, S., Ramesh Kumar, D. et al. Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models. Med Chem Res 25, 1980–1992 (2016). https://doi.org/10.1007/s00044-016-1621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1621-z

Keywords

Navigation