Skip to main content

Advertisement

Log in

An assembly of structurally diverse small and simple 5-aminomethylene derivatives of 2,4-thiazolidinedione and studies of their biological activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The synthesis of a novel series of substituted 5-(aminomethylene)thiazolidine-2,4-diones was achieved using a wide range of heterocyclic models derived from eight drug-like molecules. The primary aim of this study was to combine medicinally known, biologically active molecules bearing a 2° amine functionality, such as terbinafine, fluoxetine, atomoxetine, cetirizine, risperidone, aripiprazole, ziprasidone, and clopidogrel, with a thiazolidinedione ring via an amino-methylene linker. By targeting this synergistic approach to compounds with skeletal, functional, and stereochemical diversity, we have developed a simple synthetic concept to enrich the thiazolidinedione collection with various biological activities. The biological activities of the newly synthesized 5-(aminomethylene)thiazolidine-2,4-dione derivatives were explored. All compounds were found to have antibacterial activity, with compounds bearing pyridine or piperazine moieties showing good to excellent antibacterial activity. Compounds with piperazine moieties were also found to show good antifungal activity, whereas none of the synthesized compounds showed high cytotoxic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Dr. Reddy’s Laboratories Ltd synthesized molecules from the basic commercial raw materials.

  2. Column purification with alumina using 2:98 methanol–dichloromethane.

  3. Compound was dissolved in 20 mL of methanol and ethyl acetate (10:90) in a glass vial. The clear solution was filtered through a syringe equipped with sintered glass fibers. For the growth of crystals, the clear solution was sealed and a controlled vapor leak allowed for slow solvent evaporation at a constant temperature (25 °C). Growth of the compound was continued for 4–5 days. Cambridge Crystallographic Data Centre: Deposition number: CCDC 1024959; Unit cell parameters: a = 26.8266(8) Å, b = 8.4308(2) Å, c = 20.5568(5) Å, P21/c.

References

  • Adachi Y, Suzuki Y, Homma N, Fukazawa M, Tamura K, Nishie I, Kuromaru O (1999) The anti-ischemic effects of CP-060S during pacing-induced ischemia in anesthetized dogs. Eur J Pharmacol 367:267–273

    Article  CAS  PubMed  Google Scholar 

  • Agrawal R, Jain P, Dikshit SN (2012) Balaglitazone: a second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist. Mini-Rev Med Chem 12:87–97

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  CAS  PubMed  Google Scholar 

  • Al-Burtamani SKS, Fatope MO, Marwah RG, Onifade AK, Al-Saidi SH (2005) Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J Ethnopharmacol 96:107–112

    Article  CAS  PubMed  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl. 1):S5–S16

    Article  Google Scholar 

  • Bartlett PA, Entzeroth M (2006) Exploiting chemical diversity for drug discovery. Royal Society of Chemistry Biomolecular Science, RSC Publishing, Cambridge

    Book  Google Scholar 

  • Bhattarai BR, Kafle B, Hwang JS, Ham SW, Lee KH, Park H, Han IO, Cho H (2010) Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-γ activators. Bioorg Med Chem Lett 20:6758–6763

    Article  CAS  PubMed  Google Scholar 

  • Bruno G, Costantino L, Curinga C, Maccari R, Monforte F, Nicolò F, Ottanà R, Vigorita MG (2002) Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem 10:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58

    Article  Google Scholar 

  • Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302:613–618

    Article  CAS  PubMed  Google Scholar 

  • Cantello BCC, Eggleston DS, Haigh D, Haltiwanger RC, Heath CM, Hindley RM, Jennings KR, Sime JT, Woroniecki SR (1994) Facile biocatalytic reduction of the carbon–carbon double bond of 5-benzylidenethiazolidine-2,4-diones. Synthesis of (±)-5-(4-{2-[methyl(2-pyridyl)amino]ethoxy}benzyl)thiazolidine-2,4-dione (BRL 49653), its (R)-(+)-enantiomer and analogues. J Chem Soc Perkin Trans 1:3319–3324

    Article  Google Scholar 

  • Carroll RT, Dluzen DE, Stinnett H, Awale PS, Funk MO, Geldenhuys WJ (2011) Structure-activity relationship and docking studies of thiazolidinedione-type compounds with monoamine oxidase B. Bioorg Med Chem Lett 21:4798–4803

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Lander ES, Rogers J, Waterston RH (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Culy CR, Jarvis B (2001) Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 61:1625–1660

    Article  CAS  PubMed  Google Scholar 

  • Day C (1999) Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med 16:179–192

    Article  CAS  PubMed  Google Scholar 

  • Diurno MV, Mazzoni O, Correale G, Monterrey IG, Calignano A, La Rana G, Bolognese A (1999) Synthesis and structure–activity relationships of 2-(substituted phenyl)-3-[3-(N, N-dimethylamino)propyl]-1,3-thiazolidin-4-ones acting as H1-histamine antagonists. Il Farmaco 54:579–583

    Article  CAS  PubMed  Google Scholar 

  • Ergenç N, Capan G (1994) Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. Farmaco 49:133–135

    PubMed  Google Scholar 

  • Evans AJ, Krentz AJ (1999) Recent developments and emerging therapies for type 2 diabetes mellitus. Drugs R&D 2:75–94

    Article  CAS  Google Scholar 

  • Grabowski K, Schneider G (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol 1(1):115–127

    CAS  Google Scholar 

  • Guella G, N’Diaye I, Fofana M, Mancini I (2006) Isolation synthesis and photochemical properties of almazolone, a new indole alkaloid from a red alga of Senegal. Tetrahedron 62:1165–1170

    Article  CAS  Google Scholar 

  • Ha YM, Park YJ, Kim JA, Park D, Park JY, Lee HJ, Lee JY, Moon HR, Chung HY (2012) Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. Eur J Med Chem 49:245–252

    Article  CAS  PubMed  Google Scholar 

  • Havrylyuk D, Zimenkovsky B, Lesyk R (2009) Synthesis and anticancer activity of novel nonfused bicyclic thiazolidinone derivatives. Phosphorus Sulfur Silicon Relat Elem 184:638–650

    Article  CAS  Google Scholar 

  • Hulin B, Clark DA, Goldstein SW, McDermott RE, Dambek PJ, Kappeler WH, Lamphere CH, Lewis DM, Rizzi JP (1992) Novel thiazolidine-2,4-diones as potent euglycemic agents. J Med Chem 35:1853–1864

    Article  CAS  PubMed  Google Scholar 

  • Hulin B, McCarthy PA, Gibbs EM (1996) The glitazone family of antidiabetic agents. Curr Pharm Des 2:85–102

    CAS  Google Scholar 

  • Iwatsuka H, Taketomi S, Matsuo T, Suzuoki Z (1974) Congenitally impaired hormone sensitivity of the adipose tissue of spontaneously diabetic mice, KK. Diabetologia 10:611–616

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H (2007) Troglitazone hepatotoxicity: Are we getting closer to understanding idiosyncratic liver injury? Toxicol Sci 97:1–3

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW (2008) Application of combinatorial chemistry science on modern drug discovery. Comb Chem 10:345–354

    Article  CAS  Google Scholar 

  • Kong AP, Yamasaki A, Ozaki R, Saito H, Asami T, Ohwada S, Ko GT, Wong CK, Leung GT, Lee KF, Yeung CY, Chan JC (2011) A randomized-controlled trial to investigate the effects of rivoglitazone, a novel PPAR gamma agonist on glucose-lipid control in type 2 diabetes. Diabetes Obes Metab 13:806–813

    Article  CAS  PubMed  Google Scholar 

  • Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411

    Article  CAS  PubMed  Google Scholar 

  • Liu H (2013) Construction of biologically potential library by diversity-oriented synthesis. Org Chem Curr Res 2:e123

    Google Scholar 

  • Lo CP, Croxall WJ (1954) 5-Alkoxymethylenerhodanines and their reactions with rhodanines. J Am Chem Soc 76:4166–4169

    Article  CAS  Google Scholar 

  • Ma L, Chen J, Liang X, Xie C, Deng C, Huang L, Peng A, Wei Y, Chen L (2012) Synthesis and evaluation of 5-benzylidenethiazolidine-2,4-dione derivatives for the treatment of non-alcoholic fatty liver disease. Arch Pharm 345:517–524

    Article  CAS  Google Scholar 

  • Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, Charbonnel B, Girard J (2001) Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 27(4 Pt 1):415–423

    CAS  PubMed  Google Scholar 

  • McFarland J (1907) The nephelometer: an instrument for estimating the number of bacteria in suspensions for calculating the opsonic index and vaccines. J Am Med Assoc 49:1176–1178

    Article  Google Scholar 

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45:31–34

    Article  CAS  Google Scholar 

  • Mohanty S, Reddy GS, Karmakar AC (2014a) Synthesis of new 5-substituted–aminomethylene-thiazolidine-2,4-dione derivatives as potential antibacterial agents. J Appl Chem 3(1):82–90

    Google Scholar 

  • Mohanty S, Roy AK, Kiran SP, Rafael GE, Kumar KPV, Karmakar AC (2014b) Controlling the exothermicity of O-arylation by evaporative cooling during the process development of fluoxetine hydrochloride. Org Process Res Dev 18(7):875–885

    Article  CAS  Google Scholar 

  • Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T (1991) Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem Pharm Bull 39:1440–1445

    Article  CAS  PubMed  Google Scholar 

  • Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discovery 8:959–968

    Article  CAS  PubMed  Google Scholar 

  • NCCLS (2000) Method for dilution antimicrobial susceptibility test for bacteria that grow aerobically approved standards, 5th edn. National Committee for Clinical Laboratory Standards, Villanova

  • Pershadsingh HA, Szollosi J, Benson S, Hyun WC, Feuerstein BG, Kurtz TW (1993) Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 21:1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Pinto DGA, Saantos CMM, Silva AMS (2007) Advanced NMR techniques for structural characterization of heterocyclic structures. In: Pinho e Melo TMVD, Rocha AMdA (Eds) Recent research developments in heterocyclic chemistry, Research Signpost, Trivandrum, pp 397–475

  • Piscopo E, Diurno MV, Gagliardi R, Mazzoni O, Veneruso G (1989) Studies on heterocyclic compounds: 1,3-thiazolidin-4-one derivatives. IV. Biological activity of variously substituted 2,3-diaryl-1,3-thiazolidin-4-ones. Boll Soc Ital Biol Sper 65:853–859

    CAS  PubMed  Google Scholar 

  • Previtera T, Vigorita MG, Basile M, Orsini F, Benetollo F, Bombieri G (1994) 3,3′-Di [1,3-thiazolidine-4-one] system. VI. Structural and conformational studies on configurational isomers with antihistaminic activity. Eur J Med Chem 29:317–324

    Article  CAS  Google Scholar 

  • Rawal RK, Prabhakar YS, Katti SB, De Clercq E (2005) 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg Med Chem 13:6771–6776

    Article  CAS  PubMed  Google Scholar 

  • Reasner CA II (1999) Promising new approaches. Diabetes Obes Metab S1:41–48

    Google Scholar 

  • Reymond JL, van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Commun 1:30–38

    Article  CAS  Google Scholar 

  • Scheen AJ (2001) Hepatotoxicity with thiazolidinediones: Is it a class effect? Drug Saf 24:873–888

    Article  CAS  PubMed  Google Scholar 

  • Schimke K, Davis TM (2007) Drug evaluation: rivoglitazone, a new oral therapy for the treatment of type 2 diabetes. Curr Opin Invest Drugs 8:338–344

    CAS  Google Scholar 

  • Schreiber SL (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg Med Chem 6:1127–1152

    Article  CAS  PubMed  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Schreiber SL (2003) The small-molecule approach to biology. Chem Eng News 81:51–61

    Google Scholar 

  • Seki H, Tokunaga T, Utsumi H, Yamaguchi K (2000) Determination of heteronuclear long-range 1H–13C and 1H–15N coupling constants of Harman by modified J-HMBC 2D NMR techniques. Tetrahedron 56:2935–2939

    Article  CAS  Google Scholar 

  • Sohda T, Meguro K, Kawamatsu Y (1984) Studies on antidiabetic agents. IV. Synthesis and activity of the metabolites of 5-[4-(1-methylcyclohexylmethoxy)benzyl]-2,4-thiazolidinedione (ciglitazone). Chem Pharm Bull 32:2267–2278

    Article  CAS  PubMed  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim-Forsch 40:37–42

    CAS  Google Scholar 

  • Spring DR (2003) Diversity-oriented synthesis; a challenge for synthetic chemists. Org Biomol Chem 1:3867–3870

    Article  CAS  PubMed  Google Scholar 

  • Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34:472–482

    Article  CAS  PubMed  Google Scholar 

  • Strom AE, Hartwig JR (2013) One-pot anti-Markovnikov hydroamination of unactivated alkenes by hydrozirconation and amination. J Org Chem 78:8909–8914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taxak N, Dixit VA, Bharatam PV (2012) Density functional study on the cytochrome-mediated S-oxidation: identification of crucial reactive intermediate on the metabolic path of thiazolidinediones. J Phys Chem A 116:10441–10450

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Seki H, Yasuike S, Ikoma M, Kurita J, Yamaguchi K (2000) Direct detection of intramolecular Sb···N nonbonded interaction by 1H–13C and 1H–15N heteronuclear multiple bond correlation spectroscopy. Tetrahedron Lett 41:1031–1034

    Article  CAS  Google Scholar 

  • Walsh DP, Chang YT (2006) Chemical genetics. Chem Rev 106:2476–2530

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Karna S, Choi CH, Tong M, Tai HH, Na DH, Jang CH, Cho H (2011) Synthesis and biological evaluation of novel thiazolidinedione analogues as 15-hydroxyprostaglandin dehydrogenase inhibitors. J Med Chem 54:5260–5264

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies on hindered phenols and analogs. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32:421–428

    Article  CAS  PubMed  Google Scholar 

  • Zidar N, Tomašić T, Šink R, Rupnik V, Kovač A, Turk S, Patin D, Blanot D, Martel CC, Dessen A, Premru MM, Zega A, Gobec S, Mašič LP, Kikelj D (2010) Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem 53:6584–6594

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the management of Dr. Reddy’s Laboratories Limited for giving support to carry out this work and also thank the analytical and process development team for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Mohanty.

Additional information

Dr. Reddy’s Laboratories Limited communication number: IPDO IPM-00415.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Reddy, S.G., RamaDevi, B. et al. An assembly of structurally diverse small and simple 5-aminomethylene derivatives of 2,4-thiazolidinedione and studies of their biological activity. Med Chem Res 24, 4037–4049 (2015). https://doi.org/10.1007/s00044-015-1447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1447-0

Keywords

Navigation