Skip to main content

An Overview on the Synthesis and Biological Studies of Some Seven Membered Heterocyclic Systems

  • Chapter
  • First Online:
N-Heterocycles

Abstract

In this chapter, synthetic approaches to the preparation of seven-membered heterocycles such as azepines and benzodiazepines, oxazepines, thiazepines and dithiazepines are discussed. The data on the synthesis and biological properties of these heterocycles over the past 10–15 years are presented with an emphasis on one-pot preparation procedures. Two approaches are considered within the framework of one-stage synthesis of azepine derivatives – there are methods for recyclization of small and medium carbo-, oxa- or azacyclanes, as well as multicomponent heterocyclization reactions to prepare various compounds with azepine scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmetova VR, Rakhimova EB (2014) One-pot cyclothiomethylation of amines as efficient method for the synthesis of saturated five-, six-, seven-, and eight membered S, N-heterocycles. Russ J Org Chem 50:1711–1731

    Article  CAS  Google Scholar 

  • Akhmetova VR, Murzakova NN, Tyumkina TV, Khabibullina GR, Bushmarinov IS, Korzhova LF, Galimzyanova NF (2012) Novel 1,5,3-dithiazepanes: three-component synthesis, stereochemistry, and fungicidal activity. Russ Chem Bull, Int Ed 61:2140–2148

    Article  CAS  Google Scholar 

  • Akhmetova VR, Khabibullina GR, Galimzyanova NF, Ibragimov AG (2014) One-pot synthesis and fungicidal activity of 2-(1,5,3-dithiazepan-3-yl)ethanol and N, N′-bis(2-hydroxyethyl)tetrathiadiazacycloalkanes. Russ J Appl Chem 87:294–298

    Article  CAS  Google Scholar 

  • Almassy J, Sztretye M, Lukacs B, Dienes B, Szabo L, Szentesi P, Vassort G, Csernoch L, Jona I (2008) Effects of K-201 on the calcium pump and calcium release channel of rat skeletal muscle. Pflugers Arch 457(1):171–183

    Article  CAS  PubMed  Google Scholar 

  • Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK (2008) 1,5-Benzothiazepine, a versatile pharmacophore: a review. Eur J Med Chem 43(11):2279–2290

    Article  CAS  PubMed  Google Scholar 

  • Barton D, Ollis D (eds) (1983) Comprehensive organic chemistry, vol 8. Pergamon press, Oxford, p 485

    Google Scholar 

  • Bates DK, Stannous KL (2002) Chloride-mediated reductive cyclization-rearrangement of nitroarenyl ketones. J Org Chem, 67:8662-8665

    Google Scholar 

  • Boulware SL, Bronstein JC, Nordby EC, Weber PC (2001) Identification and characterization of a benzothiophene inhibitor of herpes simplex virus type 1 replication which acts at the immediate early stage of infection. Antivir Res 51:111–125

    Article  CAS  PubMed  Google Scholar 

  • Brahmbhatt GC, Sutariya TR, Atara HD, Parmar NJ, Gupta VK, Lagunes I, Padrón JM, Murumkar PR, Yadav MR (2020) New pyrazolyl-dibenzo[b, e][1,4]diazepinones: room temperature one-pot synthesis and biological evaluation. Mol Divers 24:355–377

    Article  CAS  PubMed  Google Scholar 

  • Braun RU, Müller ThJJ (2004) One-pot syntheses of dihydro benzo[b][1,4]thiazepines and -diazepines via coupling–isomerization–cyclocondensation sequences. Tetrahedron 60(42):9463–9469

    Article  CAS  Google Scholar 

  • Breitenlechner CB, Wegge T, Berillon L, Graul K, Marzenell K, Friebe W-G, Thomas U, Schumacher R, Huber R, Engh RA, Masjost B (2004) Structure-based optimization of novel azepane derivatives as PKB inhibitors. J Med Chem 47:1375–1390

    Article  CAS  PubMed  Google Scholar 

  • Breitenlechner CB, Friebe W-G, Brunet E, Werner G, Graul K, Thomas U, Künkele K-P, Schäfer W, Gassel M, Bossemeyer D, Huber R, Engh RA, Masjost B (2005) Design and crystal structures of protein kinase B-selective inhibitors in complex with protein kinase A and mutants. J Med Chem 48:163–170

    Article  CAS  PubMed  Google Scholar 

  • Buckley BJ, Aboelela A, Minaei E, Jiang LX, Xu Z, Ali U, Fildes K, Ch-Yi C, Cook SM, Johnson DC, Bachovchin DA, Cook GM, Apte M, Huang M, Ranson M, Kelso MJ (2018) 6-Substituted hexamethylene amiloride (HMA) derivatives as potent and selective inhibitors of the human urokinase plasminogen activator for use in cancer. J Med Chem 61:8299–8320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgey ChS, Paone DV, Shaw AW, Deng JZ, Nguyen DN, Potteiger CM, Graham SL, Vacca JP, Williams TM (2008) Synthesis of the (3R,6S)-3-amino-6-(2,3-difluorophenyl)azepan-2-one of telcagepant (MK-0974), a calcitonin gene-related peptide receptor antagonist for the treatment of migraine headache. Org Lett 10(15):3235–3238

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Beyer ThP, Yo Z, Schmidt RJ, YaQ C, Cockerham SL, Zimmerman KM, Karathanasis SK, Cannady EA, Fields T, Mantlo NB (2011) Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J Lipid Res 52(12):2169–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanteau F, Didier B, Dondy B, Doussot P, PlantierRoyon R, Portella C (2004) Synthesis of polyfluorinated nitrogencontaining heterocyclesfrom hemifluorinated enones or organofluorosilicon building Blocks as synthetic equivalents. Eur J Org Chem 7:1444–1454

    Article  CAS  Google Scholar 

  • Chen H, Shi D (2011) Efficient one-pot synthesis of spiro[indoline-3,4’-pyrazolo[3,4-e][1,4]thiazepine]dione via three-component reaction. Tetrahedron 67(31):5686–5692

    Article  CAS  Google Scholar 

  • Cui J, Xiao Zh, Zhang L-L (2021) Clinical efficacy and safety of nazartinib for epidermal growth factor receptor mutated non-small cell lung cancer: study protocol for a prospective, multicenter, open-label. Medicine 100(21):e25992

    Google Scholar 

  • Dandia A, Parewa V, Sharma A (2014) An approach towards green switch through nanocatalysis for the synthesis of biodynamic heterocycles. In: Ameta KL, Dandia A (eds), Green chemistry: synthesis of bioactive heterocycles. Springer India, p 155

    Google Scholar 

  • DeSolms SJ, Ciccarone TM, MacTough SC, Shaw AW, Buser CA, Ellis-Hutchings M, Fernandes C, Hamilton KA, Huber HE, Kohl NE, Lobell RB, Robinson RG, Tsou NN, Walsh ES, Graham SL, Beese LS, Taylor JS (2003) Dual protein farnesyltransferase-geranylgeranyltransferase-I inhibitors as potential cancer chemotherapeutic agents. J Med Chem 46(14):2973–2984

    Article  CAS  PubMed  Google Scholar 

  • Drouillat B, Dorogan IV, Kletskii M, Burov ON, Couty F (2016) Competitive ring expansion of azetidines into pyrrolidines and/or azepanes. J Org Chem 81:6677–6685

    Article  CAS  PubMed  Google Scholar 

  • El-Bayouki KhAM (2013) Benzo[1,5]thiazepine: synthesis, reactions, spectroscopy, and applications. Org Chem Intern 2013:1–71

    Article  CAS  Google Scholar 

  • Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) J Med Chem 31(12):2235–2246

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Luo Z, Sun G, Chen M, Lai J, Lin W, Goldmann S, Zhang L, Wang Zh (2017) Development of an efficient and scalable biocatalytic route to (3R)-3-aminoazepane: a pharmaceutically important intermediate. Org Process Res Dev 21(4):648–654

    Google Scholar 

  • Feng Y, Luo Z, Chen M, He F, Liu B, Goldmann S, Zhang L (2019) Further optimization of a scalable biocatalytic route to (3R)-N-boc-3-aminoazepane with immobilized ω-transaminase. Org Process Res Dev 23:355−360

    Google Scholar 

  • Fennell KA, Möllmann U, Miller MJ (2008) Syntheses and biological activity of amamistatin B and analogs. J Org Chem 73:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Fox DJ, Reckless J, Wilbert SM, Greig I, Warren S, Grainger DJ (2005) Identification of 3-(acylamino)azepan-2-ones as stable broad-spectrum chemokine inhibitors resistant to metabolism in vivo. J Med Chem 48:867–874

    Article  CAS  PubMed  Google Scholar 

  • Freitas VLS, Leirosa S, Notario R, Ribeiro da Silva MDMC (2014) Thermochemical insights on the conformational energetics of azepan and azepan-1-ylacetonitrile. J Org Chem 79(23):11583–11591

    Article  CAS  PubMed  Google Scholar 

  • Fryer RI, Taylor EC (1991) Bicyclic diazapines. In: The chemistry of heterocyclic compounds. Wiley, New York 50, ch II

    Google Scholar 

  • Gerratana B (2010) Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med Res Rev 32(2):254–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gharib A (2014) Eco-friendly synthesis of bioactive heterocycles. In: Ameta KL, Dandia A (eds), Green chemistry: synthesis of bioactive heterocycles. Springer India, p 83

    Google Scholar 

  • Ghorai MK, Sahoo AK, Bhattacharyya A (2014) Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring-opening of aziridines/Cu-catalyzed C−N/C−C bond formation. J Org Chem 79(14):6468–6479

    Article  CAS  PubMed  Google Scholar 

  • Goutham K, Kumar DA, Suresh S, Sridhar B, Narender R, Karunakar GV (2015) Gold-catalyzed intramolecular cyclization of N-propargylic β-enaminones for the synthesis of 1,4-oxazepine derivatives. J Org Chem 80(21):11162–11168

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Harmatz JS, Shader RI (2020) Diazepam in the elderly: looking back, ahead, and at the evidence. J Clin Psychopharmacol 40(3):215–219

    Article  PubMed  Google Scholar 

  • Gudisela MR, Srinivasu N, Mulakayala C, Bommu P, Basaveswara Rao MV, Mulakayala N (2017) Design, synthesis and anticancer activity of N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives. Bioorg Med Chem Letters 27(17):4140–4145

    Google Scholar 

  • Hajishaabanha F, Shaabani A (2014) Synthesis of oxazepin-quinoxaline bis-heterocyclic scaffolds via an efficient three component synthetic protocol. RSC Adv 4:46844–46850

    Article  CAS  Google Scholar 

  • Hanoon HD (2011) Synthesis and characterization of new seven-membered heterocyclic compounds from reaction of new schiff bases with maleic and phthalic anhydrides. Nation J Chem 41:77–89

    Google Scholar 

  • Hartley JA (2011) The development of pyrrolobenzodiazepines as antitumour agents. Exp Opin Investig Drugs. 20(6):733–744

    Article  CAS  Google Scholar 

  • He M, Chen N, Wang J, Peng S (2019) Rhodium-catalyzed regiodivergent [3+2] and [5+2]cycloadditions of quinolinium ylides with alkynes. Org Lett 21:5167–5171

    Google Scholar 

  • Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  CAS  PubMed  Google Scholar 

  • Horváth EJ, Horváth K, Hámori T, Fekete S, Sólyom S, Palkovits M (2000) Anxiolytic 2,3-benzodiazepines, their specific binding to the basal ganglia. Prog Neurobiol 60(4):309–342

    Article  PubMed  Google Scholar 

  • Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13:195–207

    Article  CAS  PubMed  Google Scholar 

  • Ilyn AP, Loseva MV, Vvedensky VY, Putsykina EB, Tkachenko SE, Kravchenko DV, Khvat AV, Krasavin MY, Ivachtchenko AV (2006) One-step assembly of carbamoyl-substituted heteroannelated [1,4]thiazepines. J Org Chem 71:2811–2819

    Article  CAS  PubMed  Google Scholar 

  • Karikomi M, D’Hooghe M, Verniest G, De kimpe N (2008) Regio- and Stereocontrolled Synthesis of Novel 3-Sulfonamido-2,3,4,5-Tetrahydro-1,5-benzothiazepines from 2-(bromomethyl)- or 2-(sulfonyloxymethyl)aziridines. Org Biomol Chem 6(11):1902–1904

    Google Scholar 

  • Kartsev VQ (Ed) (1999) Selected method for synthesis and modification of heterocycles. IBS Press, Moscow, p 1:571

    Google Scholar 

  • Katritzky AR, Rees CW (1984) Comprehensive heterocyclic chemistry. In: The structure, reaction, synthesis and uses of heterocyclic compounds, Pergamon, New York

    Google Scholar 

  • Kaur M, GargS MDS, Sohal HS (2021) A review on synthesis, reactions and biological properties of seven membered heterocyclic compounds: azepine, azepane, azepinone. Curr Org Chem 25(4):449–506

    Article  CAS  Google Scholar 

  • Khabibullina GR, Akhmetova VR, Bushmarinov IS, Ibragimov AG (2013) One-pot synthesis of bis-1,5,3-dithiazepanes from ethane-1,2-dithiol, formaldehyde, and ammonium salts. Russ J Org Chem 10:1542–1545

    Article  CAS  Google Scholar 

  • Khabibullina GR, Akhmetova VR, Abdullin MF, Tyumkina TV, Khalilov LM, Ibragimov AG, Dzhemilev UM (2014) Multicomponent reactions of amino alcohols with CH2O and dithiols in the synthesis of 1,3,5-dithiazepanes and macroheterocycles. Tetrahedron 70:3502–3509

    Article  CAS  Google Scholar 

  • Khabibullina GR, Fedotova ES, Akhmetova VR, Mesheryakova ES, Khalilov LM, Ibragimov AG (2016) A green synthesis in water of novel (1,5,3-dithiazepan-3-yl)alkanoic acids by multicomponent reaction of amino acids, CH2O and 1,2-ethanedithiol. Mol Divers 20:557–565

    Article  CAS  PubMed  Google Scholar 

  • Khairullina RR, Akmanov BF, Starikova ZA, Ibragimov AG, Dzhemilev UM (2013) Synthesis of N-(1,5,3-dithiazepan-3-yl)- and N-(1,5,3-dithiazocan-3-yl)amides in the presence of lanthanide catalysts. Russ J Org Chem 49:1686–1689

    Article  CAS  Google Scholar 

  • Khairullina RR, Geniyatova AR, Meshcheryakova ES, Khalilov LM, Ibragimov AG, Dzhemilev UM (2015) Catalytic cycloaminomethylation of ureas and thioureas with N, N-bis(methoxymethyl)alkanamines. Russ J Org Chem 51:116–120

    Article  CAS  Google Scholar 

  • Kharaneko OI, Bogza SL (2013) Novel strategy for the synthesis of the pyrrolo[3,4-d][1,2]diazepine heterocyclic system. Chem Heterocycl Comp 48(11):1734–1735

    Article  CAS  Google Scholar 

  • Kibalny AV, Dulenko VI, Khabarov KM (2010) Drugs of the future. Suppl. a. Brussel 35:138

    Google Scholar 

  • Kulandai Raj AS, Kale BS, Mokar BhD, Liu R-S (2017) Gold-catalyzed N, O-functionalizations of 6-allenyl-1-ynes with N-hydroxyanilines to construct benzo[b]-azepin-4-one cores. Org Lett 19:5340–5343

    Article  CAS  PubMed  Google Scholar 

  • Kwiecień H, Śmist M, Wrześniewska A (2012) Synthesis of aryl-fused 1,4-oxazepines and their oxo derivatives: a review. Curr Org Synthesis 9(6):828–850

    Article  Google Scholar 

  • Lelais G, Epple R, Marsilje TH, Long YO, McNeill M, Chen B, Lu W, Anumolu J, Badiger S, Bursulaya B, DiDonato M, Fong R, Juarez J, Li J, Manuia M, Mason DE, Gordon P, Groessl T, Johnson K, Yo J, Kasibhatla Sh, Li C, Isbell J, Spraggon G, Bender S, Michellys P-Y (2016) Discovery of (R,E)-N-(7-chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR mutant non-small-cell lung cancers. J Med Chem 59(14):6671–6689

    Google Scholar 

  • Li JJ, Johnson DS (eds) (2010) Modern drug synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  • Li Q, Deng A-J, Li L, Wu L-Q, Ji M, Zhang H-J, Li Z-H, Ma L, Zhang Z-H, Chen X-G, Qin H-L (2017a) Azacyclo-indoles and phenolics from the flowers of Juglans regia. J Nat Prod 80:2189–2198

    Google Scholar 

  • Li T, Zhang J, Pan J, Wu Z, Hu D, Song B (2017b) Design, synthesis, and antiviral activities of 1,5-benzothiazepine derivatives containing pyridine moiety. Eur J Med Chem 125:657–662

    Google Scholar 

  • Lokeshwari DM, Rekha ND, Srinivasan B, Vivek HK, Kariyappa AK (2017) Design, synthesis of novel furan appended benzothiazepine derivatives and in vitro biological evaluation as potent VRV-PL-8a and H+ /K+ ATPase inhibitors. Bioorg Med Chem Lett 27(14):3048–3054

    Article  CAS  PubMed  Google Scholar 

  • López CS, Faza ON, de Le ÁR (2009) Electrocyclic ring opening of charged cis-bicyclo[3.2.0]heptadiene and heterocyclic derivatives. The Anti-Woodward-Hoffmann Quest (II). J Org Chem 74:2396–2402

    Article  CAS  Google Scholar 

  • Makhmudiyarova NN, Prokof’ev KI, Mudarisova LV, Ibragimov AG, Dzhemilev UM (2013a) Synthesis of 3-hetaryl-1,5,3-dithiazepanes and 3-hetaryl-1,5,3-dithiazocanes in the presence of catalysts based on transition metals. Russ J Org Chem 49:658–662

    Google Scholar 

  • Makhmudiyarova NN, Prokof'ev KI, Mudarisova LV, Ibragimov AG, Dzhemilev UM (2013b) Efficient synthesis of 3-aryl(hetaryl)-1,5,3-dioxazepanes involving catalysts containing Sm and Co. Russ J Org Chem 49:750–753

    Google Scholar 

  • Makhmudiyarova NN, Mudarisova LV, Meshcheryakova ES, Ibragimov AG, Dzhemilev UM (2015) Efficient catalytic method for the synthesis of N-aryl-substituted 1,5,3-dithiazamacroheterocycles. Tetrahedron 71:259–265

    Google Scholar 

  • Makhmudiyarova NN, Kiyamutdinova GM, Meshcheryakova ES, Ibragimov AG, Dzhemilev UM (2016) Efficient synthesis of cyclophanes containing sulfur and nitrogen atoms by cycloaminomethylation of benzenedithiols in the presence of samarium-based catalysts. Russ J Org Chem 52(10):1419–1426

    Google Scholar 

  • Mallepalli R, Yeramanchi L, Bantu R, Nagarapu L (2011) Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions. Synlett 18:2730–2732

    Google Scholar 

  • Marcaccini S, Miguel D, Torroba T, García-Valverde M (2003) 1,4-Thiazepines, 1,4-benzothiazepin-5-ones, and 1,4-benzothioxepin orthoamides via multicomponent reactions of isocyanides. J Org Chem 68:3315–3318

    Article  CAS  PubMed  Google Scholar 

  • Marepu N, Yeturu S, Pal M (2018) Synthesis and cytotoxicity of (±)-9-hydroxy-5-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepine-2-carboxamide: an active component of Juglans regia. Asian J Org Chem 7:1806–1809

    Article  CAS  Google Scholar 

  • Matsuya Y, Ohsawa N, Nemoto H (2006) Facile transformation of benzocyclobutenones into 2,3-benzodiazepines via 4π-8π tandem electrocyclic reactions involving net insertion of diazomethylene compounds. J Am Chem Soc 128:13072–13073

    Article  CAS  PubMed  Google Scholar 

  • Mokaya R, Poliakoff M (2005) Chemistry: a cleaner way to nylon? Nature 437(7063):1243–1244

    Article  CAS  PubMed  Google Scholar 

  • Mor S, Pahal P, Narasimhan B (2012) Synthesis, characterization, biological evaluation and QSAR studies of 11-p-substituted phenyl-12-phenyl-11a,12-dihydro-11H-indeno[2,1-c][1,5]benzothiazepines as potential antimicrobial agents. Eur J Med Chem 57:196–210

    Article  CAS  PubMed  Google Scholar 

  • Mouradzadegun A, Elahi S, Abadast F (2015a) Synthesis of a functionalized polymer based on a calix[4]resorcinarene via covalently anchored cationic moieties: a reactive solid support for ring transformation and expansion of thiopyrylium salts. Synthesis 47:630–640

    Google Scholar 

  • Mouradzadegun A, Elahi S, Ghanbarzadeh P (2015b) A highly efficient and eco-friendly approach for the synthesis of triarylpyridine and novel triaryl-[1,3]thiazepine derivatives via ring transformation and expansion of triarylthiopyrylium salts. Phosphorus Sulfur Silicon 190:2031–2039

    Google Scholar 

  • Mukherjee C, Biehl E (2004) An efficient synthesis of benzene fused six-, seven- and eight membered rings containing nitrogen and sulfur by benzyne ring closure reaction. Heterocycles 63(10):2309–2318

    Article  CAS  Google Scholar 

  • Muylaert K, Jatczak M, Mangelinckx S, Stevens CV (2016) Synthesis of pyrido-annelated diazepines, oxazepines and thiazepines. Curr Med Chem 23(42).

    Google Scholar 

  • Nakatani S, Yamamoto Y, Hayashi M, Komiyama K, Ishibashi M (2004) Cycloanthranilylproline-derived constituents from a myxomycete Fuligo candida. Chem Pharm Bull 52:368–370

    Article  CAS  Google Scholar 

  • Nazeri MT, Farhid H, Mohammadian R, Shaabani A (2020) Cyclic imines in Ugi and Ugi-type reactions. ACS Comb Sci 22(8):361–400

    Article  CAS  PubMed  Google Scholar 

  • Nedolya NA, Trofimov BA (2013) [1,7]-Electrocyclization reactions in the synthesis of azepine derivatives. Chem Heterocycl Comp 49(1):152–176

    Article  CAS  Google Scholar 

  • Panth N, Paudel KR, Karki R (2016) Phytochemical profile and biological activity of Juglans Regia. J Integr Med 14:359–373

    Article  PubMed  Google Scholar 

  • Paone DV, Shaw AW, Nguyen DN, Burgey ChS, Deng JZ, Kane SA, Koblan KS, Salvatore ChA, Mosser SD, Johnston VK, Wong BK, Miller-Stein CM, Hershey JC, Graham SL, Vacca JP, Williams ThM (2007) Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974). J Med Chem 50:5564–5567

    Article  CAS  PubMed  Google Scholar 

  • Patchett AA, Nargund RP (2000) Privileged structures–An update. Ann Rep Med Chem 35:289–298

    CAS  Google Scholar 

  • Patil M, Noonikara-Poyil A, Joshi SD, Patil SA, Patil SA, Lewis AM, Bugarin A (2021) Synthesis, molecular docking studies, and in vitro antimicrobial evaluation of piperazine and triazolo-pyrazine derivatives. Mol Divers. 1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Lilly MJ, Owen DJ, D’Souza LJ, Tang X-Q, Yu J, Nazarbaghi R, Hunter A, Anderson ChM, Glasco S, Ede NJ, James IW, Maitra U, Chandrasekaran S, Moos WH, Ghosh SS (2003) Efficient syntheses of benzothiazepines as antagonists for the mitochondrial sodium-calcium exchanger: potential therapeutics for type II diabetes. J Org Chem 68:92–103

    Google Scholar 

  • Pettersson B, Hasimbegovic V, Bergman J (2011) One-pot eschenmoser episulfide contractions in DMSO: applications to the synthesis of Fuligocandins A and B and a number of vinylogous amides. J Org Chem 76:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Zhou W, Chen F, Ya O, Jiao N (2011) Iron-catalyzed CH and CC Bond cleavage: a direct approach to amides from simple hydrocarbons. Angew Chem Int Ed 50:12595–12599

    Article  CAS  Google Scholar 

  • Quin LD, Tyrell JA (2010) Fundamentals of heterocyclic chemistry: importance in nature and in the synthesis of pharmaceuticals. Wiley-VCH, Weinheim, p 344

    Google Scholar 

  • Rakhimova EB, Vasil’yeva IV, Khalilov LM, Ibragimov AG, Dzhemilev UM (2012) Effective synthesis of N-aryl-substituted 1,5,3-dithiazepinanes and 1,5,3-dithiazocinanes. Chem Heterocycl Comp 48:1050–1057

    Article  CAS  Google Scholar 

  • Rakhimova EB, Ismagilov RA, Zainullin RA, Galimzyanova NF, Ibragimov AG (2013) Synthesis of α, ω-bis-1,5,3-Dithiazepanes and their fungicidal properties. Russ J Appl Chem 86:1504–1508

    Article  CAS  Google Scholar 

  • Ram VJ, Sethi A, Nath M, Pratap R (2019) Seven-membered heterocycles. In: The chemistry of heterocycles. Elsevier Ltd., pp 393–425

    Google Scholar 

  • Reutskaya E, Osipyan A, Sapegin A, Novikov AS, Krasavin M (2019) Rethinking hydrolytic imidazoline ring expansion: a common approach to the preparation of medium-sized rings via side-chain insertion into [1.4]oxa- and [1.4]thiazepinone scaffolds. J Org Chem 84:1693–1705

    Article  CAS  PubMed  Google Scholar 

  • Rosowsky A (Ed.) (1984) Azepines. Part 1 chemistry of heterocyclic compounds: a series of monographs. Wiley-Interscience, Hardcover, p 840

    Google Scholar 

  • Ruiz A, Alberdi E, Matute C (2014) CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis 5(4):e1156

    Google Scholar 

  • Samineni R, Bandi ChRC, Srihari P, Mehta G (2016) Multiple aryne insertions into oxindoles: synthesis of bioactive 3,3-diarylated oxindoles and dibenzo[b, e]azepin-6-ones. Org Lett 18:6184–6187.

    Article  CAS  PubMed  Google Scholar 

  • Sammor MS, Hussein AQ, Awwadi FF, El-Abadelah MM (2018) One-pot synthesis of novel 3,10-dihydro-2H-1,3-oxazepino[7,6-b]indoles via 1,4-dipolar cycloaddition reaction. Tetrahedron 74:42–48

    Article  CAS  Google Scholar 

  • Shaabani A, Mofakham H, Maleki A, Hajishaabanha F (2010) Novel isocyanide-based one-pot multicomponent syntheses of tetrahydrobenzo[b][1,4]oxazepine and malonamide derivatives. J Comb Chem 12:630–632

    Article  CAS  PubMed  Google Scholar 

  • Shaabani A, Nazeri MT, Afshari R (2019a) 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Mol Divers 23:751–807

    Google Scholar 

  • Shaabani S, Shaabani A, Kucerakova M, Dusek M (2019b) A one-pot synthesis of oxazepin-quinazolinone bis-heterocyclic Scaffolds via Isocyanide-based three-component reaction. Front Chem 7:623-625

    Google Scholar 

  • Shaabani A, Mohammadian R, Afshari R, Hooshmand SE, Nazeri MT, Javanbakht S (2021) The status of isocyanide-based multi-component reaction in Iran (2010–2018) Mol Divers 25:1145–1210

    Google Scholar 

  • Shaik AB, Prasad YeR, Nissankararao S, Shahanaaz Sh (2020) Synthesis, biological and computational evaluation of novel 2,3-dihydro-2-aryl-4-(4-isobutylphenyl)-1,5-benzothiazepine derivatives as anticancer and anti-EGFR tyrosine kinase agents. anti-cancer agents in Med Chem 20(9):1115–1128

    Google Scholar 

  • Shi J, Wu J, Cui C, Dai W-M (2016) Microwave-assisted intramolecular Ullmann diaryl etherification as the post-Ugi annulation for generation of dibenz[b, f][1,4]oxazepine scaffold. J Org Chem 81:10392–10403

    Article  CAS  PubMed  Google Scholar 

  • Sridharan V, Maiti S, Menendez JC (2009) Efficient generation of highly functionalized fused oxazepine frameworks based on a CAN-catalyzed four-component tetrahydropyridine synthesis/ring-closing metathesis sequence. J Org Chem 74:9365–9371

    Article  CAS  PubMed  Google Scholar 

  • Starkenmann C, Brauchli R, Maurer B (2005) How cysteine reacts with citral: an unexpected reaction of β, β-disubstituted acroleins with cysteine leading to hexahydro-1,4-thiazepines. J Agric Food Chem 53:9244–9248

    Article  CAS  PubMed  Google Scholar 

  • Sum F-W, Dusza J, Santos ED, Grosu G, Reich M, Du X, Albright JD, Chan P, Coupet J, Ru X, Mazandarani H, Saunders T (2003) Structure−activity study of novel tricyclic benzazepine arginine Vasopressin antagonists. Bioorg Med Chem Lett 13:2195−2198

    Google Scholar 

  • Tsotinis A, Eleutheriades A, Bari LD, Pescitelli G (2007) A new, stereoselective, rng-forming reaction of 1,2-ethanedithiol with N-acylated indoles. J Org Chem 72:8928–8931

    Article  CAS  PubMed  Google Scholar 

  • Van den Hoven BG, Alper H (2001) Remarkable synthesis of 2-(Z)-6-(E)-4H-[1,4]-thiazepin-5-ones by zwitterionic rhodium-catalyzed chemo- and regioselective cyclohydrocarbonylative ring expansion of acetylenic thiazoles. J Am Chem Soc 123(6):1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Voigt B, Linke M, Mahrwald R (2015) Multicomponent cascade reactions of unprotected carbohydrates and amino acids. Org Lett 17(11):2606–2609

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Z, Li X-Q, Yi-Sh A (2015) 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure–activity relationships. Org Biomol Chem 13:5497–5509

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Guillot R, Carpentier J-F, Ya S, Bour C, Gandon V, Leboeuf D (2020) Synthesis of bridged tetrahydrobenzo[b]azepines and derivatives through an Aza-Piancatelli cyclization/Michael addition sequence. Angew Chem Int Ed 59(3):1134–1138

    Article  CAS  Google Scholar 

  • Wellmar UJ (1998) Urea as leaving group in the synthesis of 3-(tert-butyl)perhydro-1,5,3-dithiazepine. J Heterocycl Chem 35:1531–1532

    Article  CAS  Google Scholar 

  • Willy B, Müller ThJJ (2010) Three-component synthesis of benzo[b][1,5]thiazepines via coupling–addition–cyclocondensation sequence. Mol Divers 14:443–453

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Wu J, Dai W-M (2006) C-N Bond-linked conjugates of dibenz[b, f][1,4]oxazepines with 2-oxindole. Synlett 13:2099–2103

    Google Scholar 

  • Xu J (2005) A structurally diverse heterocyclic library: a benzothiazepine-fused β-lactam library derived from reaction of 2,3-dihydro-1,5-benzothiazepines and acyl chlorides: synthesis and stereochemistry. Mol Divers 9(1–3):45–49

    Article  PubMed  CAS  Google Scholar 

  • Xu Y (2016) Recent progress on bile acid receptor modulators for treatment of metabolic diseases. J Med Chem 59(14):6553–6559

    Article  CAS  PubMed  Google Scholar 

  • Yamashita DS, Marquis RW, Xie R, Nidamarthy SD, Hy-J O, Jeong JU, Erhard KF, Ward KW, Roethke ThJ, Smith BR, Cheng H-Y, Geng X, Lin F, Offen PH, Wang B, Nevins N, Head MS, Haltiwanger RC, Sarjeant AAN, Liable-Sands LM, Zhao B, Smith WW, Janson ChA, Gao E, Tomaszek T, McQueney M, James IE, Gress CJ, Zembryki DL, Lark MW, Veber DF (2006) Structure activity relationships of 5-, 6-, and 7-methyl-substituted azepan-3-one cathepsin K inhibitors. J Med Chem 49:1597–1612

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Moreira W, Nyantakyi SA, Chen H, Aziz DB, Go M-L, Dick T (2017) Amphiphilic indole derivatives as antimycobacterial agents: structure−activity relationships and membrane targeting properties. J Med Chem 60:2745–2763

    Article  CAS  PubMed  Google Scholar 

  • Yi K, Zora M (2018) Synthesis of 1,4-Thiazepines. J Org Chem 83:8376–8389

    Article  CAS  Google Scholar 

  • Zappalà M, Postorino G, Micale N, Caccamese S, Parrinello N, Grazioso G, Roda G, Menniti FS, De Sarro G, Grasso S (2006) Synthesis, chiral resolution, and enantiopharmacology of a potent 2,3-benzodiazepine derivative as noncompetitive AMPA receptor antagonist. J Med Chem 49(2):575–581

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jacobson A, Rusche JR, Herlihy W (1999) Unique structures generated by Ugi 3CC reactions using bifunctional starting materials containing aldehyde and carboxylic acid. J Org Chem 64:1074–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhao W-N, Ghosh B, Tyler M, Lalonde J, Joseph NF, Kosaric N, Fass DM, Tsai L-H, Mazitschek R, Haggarty SJ (2018) Class I histone deacetylase inhibition by tianeptinaline modulates neuroplasticity and enhances memory. ACS Chem Neurosci 9((9):2262–2273

    Google Scholar 

  • Zhu G, Yi Z, Zhou J, Chen Z, Guo P, Ya H, Chen J, Song H, Yi W (2018) Bran-new four-molecule and five-molecule cascade reactions for one-pot synthesis of pyrano[3,2-c]chromen-5-ones and spiro[benzo[b][1,4]diazepine-2,2′-pyrano[3,2-c]chromen]-5′-ones under catalyst- and solvent-free conditions. ACS Omega 3(10):13494–13502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the Project part of the State Assignment FMRS-2022-0079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vnira R. Akhmetova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhmetova, V.R., Khabibullina, G.R., Ibragimov, A.G. (2022). An Overview on the Synthesis and Biological Studies of Some Seven Membered Heterocyclic Systems. In: Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L. (eds) N-Heterocycles. Springer, Singapore. https://doi.org/10.1007/978-981-19-0832-3_5

Download citation

Publish with us

Policies and ethics