Skip to main content
Log in

Calderón’s First and Second Complex Interpolations of Closed Subspaces of Morrey Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we are going to describe the first and second complex interpolations of closed subspaces of Morrey spaces, based on our previous results in [11]. Our results will be general enough because we are going to deal with abstract linear subspaces satisfying the lattice condition only. We also consider the closure in Morrey spaces on bounded domains of the set of smooth functions with compact support. Here, we do not require the smoothness condition on domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, no. 223. Springer, Berlin (1976)

  2. Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 31–40 (1999)

  3. Burenkov, V. I., Nursultanov, E. D.: Description of interpolation spaces for local Morrey-type spaces. (Russian), Tr. Mat. Inst. Steklova 269 (2010), Teoriya Funktsii i Differentsialnye Uravneniya, 52–62; translation in Proc. Steklov Inst. Math. 269 (2010)

  4. Calderón, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math. 14, 113–190. no. 1, 46–56 (1964)

  5. Campanato, S., Murthy, M.K.V.: Una generalizzazione del teorema di Riesz-Thorin. Ann. Scuola Norm. Sup. Pisa 19, 87–100 (1965). (Italian)

  6. Caso, L., D’Ambrosio, R., Monsurrò, S.: Some remarks on spaces of Morrey type. Abstr. Appl. Anal., pp. 22 (2010) (Art. ID 242079)

  7. Chiarenza, F., Franciosi, M.: A generalization of a theorem by C. Miranda. Ann. Mat. Pura Appl. 161(1), 285–297 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cobos, F., Peetre, J., Persson, L.E.: On the connection between real and complex interpolation of quasi-Banach spaces. Bull. Sci. Math. 122, 17–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eridani, Gunawan, H., Nakai, E., Sawano, Y.: Characterizations for the generalized fractional integral operators on Morrey spaces. Math. Ineq. Appl. 17(2), 761–777 (2014)

  10. Guliyev, V.S., Deringoz, F., Hasanov, J.J.: \(\Phi \)-Admissible singular operators and their commutators on vanishing generalized Orlicz–Morrey spaces. J. Inequal. Appl. 2014(1), 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hakim, D.I., Sawano, Y.: Interpolation of generalized Morrey spaces. Rev. Mat. Complut. 29(2), 295–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Comm. PDE 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38(3), 741–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemarié-Rieusset, P.G.: Erratum to: Multipliers and Morrey spaces. Potential Anal. 41, 1359–1362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Dissertationes Math. (Rozprawy Mat.) 489, pp. 114 (2013)

  16. Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces. Can. Math. Bull. 57, 598–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazzucato, A. L.: Decomposition of Besov–Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 279–294. Contemp. Math. 320, Am. Math. Soc., Providence, RI (2003)

  18. Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators, and the Riesz potential on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakai, E.: A characterization of pointwise multipliers on the Morrey spaces. Sci. Math. 3, 445–454 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Studia Math. 188(3), 193–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nakai, E., Sobukawa, T.: \(B_u^w\)-function spaces and their interpolation. Tokyo Math. J. (online)

  23. Nakamura, S., Noi, T., Sawano, Y.: Generalized Morrey spaces and trace operator. Sci. Math. China 59(2), 281–336 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peetre, J.: On the theory of \({\cal L}_{p,\lambda }\) spaces. J. Funct. Anal. 4, 71–87 (1969)

    Article  Google Scholar 

  25. Ragusa, M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Glob. Optim. 40(1–3), 361–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruiz, A., Vega, L.: Corrigenda to Unique continuation for Schrödinger operators with potential in Morrey spaces and a remark on interpolation of Morrey spaces. Publ. Mat. 39, 405–411 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257(4), 871–905 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282(12), 1788–1810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo. 22, 663–683 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Sawano, Y., Wadade, H.: On the Gagliardo–Nirenberg type inequality in the critical Sobolev–Morrey space. J. Fourier Anal. Appl. 19(1), 20–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spanne, S.: Sur l’interpolation entres les espaces \({\cal L}^{(p,\Phi )}_k\). Ann. Scuola Norm. Sup. Pisa 20, 625–648 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Triebel, H.: Hybrid function spaces, heat and Navier–Stokes equations, tracts in Mathematics 24, European Mathematical Society (2014)

  34. Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, D., Yuan, W.: Dual properties of Triebel–Lizorkin-type spaces and their applications. Z. Anal. Anwend. 30, 29–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11(5), 1350021, pp. 45 (2013)

  38. Yuan, W.: Complex interpolation for predual spaces of Morrey-type spaces. Taiwan. J. Math. 18(5), 1527–1548 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture notes in mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  40. Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey–Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu, K.: Operator theory in function spaces. No. 138. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

Download references

Acknowledgments

The second author is supported by JSPS Grand-in-Aid for Scientific Research (C) No. 16K05209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny Ivanal Hakim.

Additional information

Communicated by Mieczysław Mastyło.

Appendix: a function \(f \in {\mathcal M}^p_q \setminus (L^1+L^\infty )\)

Appendix: a function \(f \in {\mathcal M}^p_q \setminus (L^1+L^\infty )\)

We aim here to present an example of a function \(f \in {\mathcal M}^p_q \setminus (L^1+L^\infty )\). Let \(n=1\) for simplicity. Define

$$\begin{aligned} f=f_p:=\sum _{j=100}^\infty [\log _2\log _2 j]^{1/p}\chi _{[j!,j!+[\log _2\log _2 j]^{-1}]}. \end{aligned}$$
(6.1)

Lemma 6.1

Let \(1 \le q<p<\infty \). Then f given by (6.1) belongs to \({\mathcal M}^p_q\) but does not belong to \(L^1+L^\infty \).

Proof

Let (ab) be an interval which intersects the support of f.

  1. 1.

    Case 1 : \(b-a<2\). In this case, there exists uniquely \(j \in {\mathbb N} \cap [100,\infty )\) such that \([a,b] \cap [j!,j!+[\log _2\log _2 j]^{-1}] \ne \emptyset \). Thus,

    $$\begin{aligned}&(b-a)^{\frac{1}{p}-\frac{1}{q}} \left( \int _a^b f(t)^q\,dt\right) ^{\frac{1}{q}}\\&\quad = (b-a)^{\frac{1}{p}-\frac{1}{q}} \left( \int _{\max (a,j!)}^{\min (b,j!+[\log _2\log _2 j]^{-1})} f(t)^q\,dt \right) ^{\frac{1}{q}}\\&\quad \le (\min (b,j!+[\log _2\log _2 j]^{-1})-\max (a,j!))^{\frac{1}{p}-\frac{1}{q}}\\&\qquad \left( \int _{\max (a,j!)}^{\min (b,j!+[\log _2\log _2 j]^{-1})} f(t)^q\,dt \right) ^{\frac{1}{q}}\\&\quad = [\log _2\log _2 j]^{\frac{1}{p}} (\min (b,j!+[\log _2\log _2 j]^{-1})-\max (a,j!))^{\frac{1}{p}}\\&\quad \le 1. \end{aligned}$$
  2. 2.

    Case 2 : \(b-a>2\). Set

    $$\begin{aligned} m := \min ([a,b] \cap \mathrm{supp}(f)), \quad M := \max ([a,b] \cap \mathrm{supp}(f)). \end{aligned}$$

    Choose \(j_m,j_M \in {\mathbb N} \cap [100,\infty )\) so that \(m \in [j_m!,j_m!+j_m{}^{-1}]\) and \(M \in [j_M!,j_M!+j_M{}^{-1}]\). If \(j_M-j_m \le 2\), then we go through a similar argument as before. Assume \(j_M-j_m \ge 3\). Then we have

    $$\begin{aligned} b-a \ge M-m \ge j_M!-j_m!-j_m{}^{-1} \ge j_M!-j_m!-1. \end{aligned}$$

    Thus,

    $$\begin{aligned} (b-a)^{\frac{1}{p}-\frac{1}{q}} \left( \int _a^b f(t)^q\,dt\right) ^{\frac{1}{q}}&\le (j_M!-j_m!-1)^{\frac{1}{p}-\frac{1}{q}} \left( \int _{j_m!}^{j_M!+1} f(t)^q\,dt\right) ^{\frac{1}{q}}\\&\le C j_M!{}^{\frac{1}{p}-\frac{1}{q}} \left( \sum _{j=j_m}^{j_M} (\log _2 \log _2 j)^{\frac{q-p}{p}}\right) ^{\frac{1}{q}}\\&\le C. \end{aligned}$$

Thus, \(f \in {\mathcal M}^p_q\).

Now we disprove \(f \in L^1+L^\infty \). Let R be fixed. Then a geometric observation shows that

$$\begin{aligned} \Vert f-\min (f,R)\Vert _{L^1} \le \Vert f-h\Vert _{L^\infty } \end{aligned}$$

for any \(h \in L^\infty \) with \(\Vert h\Vert _{L^\infty }\le R\).

Let \(S>2R+2\) be an integer. Then

$$\begin{aligned}&\int _{f=S}(f-\min (f,R)) = |\{f=S\}|(S-R) \ge \frac{S}{2}|\{f=S\}| \\&\quad = \frac{S}{2}\sum _{k=2^{2^S}}^{2^{2^{S+1}}} \frac{1}{k} \ge C S(2^{S+1}-2^S). \end{aligned}$$

Thus, \(\Vert f-\min (f,R)\Vert _{L^1}=\infty .\) Hence, \(f \notin L^1+L^\infty \).

Remark 6.2

For the case in \({\mathbb R}^n\) with \(n>1\), we can consider

$$\begin{aligned} f(x)=f(x_1,\ldots ,x_n):=\prod _{j=1}^n f_p(x_j), \end{aligned}$$

where \(f_p(x_j)\) is defined in (6.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, D.I., Sawano, Y. Calderón’s First and Second Complex Interpolations of Closed Subspaces of Morrey Spaces. J Fourier Anal Appl 23, 1195–1226 (2017). https://doi.org/10.1007/s00041-016-9503-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9503-9

Keywords

Mathematics Subject Classification

Navigation