Skip to main content
Log in

Fourier Frames for the Cantor-4 Set

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The measure supported on the Cantor-4 set constructed by Jorgensen–Pedersen is known to have a Fourier basis, i.e. that it possess a sequence of exponentials which form an orthonormal basis. We construct Fourier frames for this measure via a dilation theory type construction. We expand the Cantor-4 set to a two dimensional fractal which admits a representation of a Cuntz algebra. Using the action of this algebra, an orthonormal set is generated on the larger fractal, which is then projected onto the Cantor-4 set to produce a Fourier frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123(6), 1661–1668 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dai, X.-R., He, X.-G., Lai, C.-K.: Spectral property of Cantor measures with consecutive digits. Adv. Math. 242, 187–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutkay, D.E., Han, D., Sun, Q.: On the spectra of a Cantor measure. Adv. Math. 221(1), 251–276 (2009)

  5. Dutkay, D.E., Han, D., Weber, E.: Bessel sequences of exponentials on fractal measures. J. Funct. Anal. 261(9), 2529–2539 (2011)

  6. Dutkay, D.E., Han, D., Weber, E.: Continuous and discrete Fourier frames for fractal measures. Trans. Am. Math. Soc. 366(3), 1213–1235 (2014)

  7. Dutkay, D.E., Picioroaga, G., Song, M.-S.: Orthonormal bases generated by Cuntz algebras. J. Math. Anal. Appl. 409(2), 1128–1139 (2014)

  8. Han, D., Larson, D.R.: Frames, bases and group representations, Mem. Am. Math. Soc. 147 (2000), no. 697, x+94. MR 1686653 (2001a:47013)

  9. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jorgensen, P.E.T., Pedersen, S.: Dense analytic subspaces in fractal \(L^2\)-spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Łaba, I., Wang, Y.: On spectral Cantor measures. J. Funct. Anal. 193(2), 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.-L.: \(\mu _{M, D}\)-Orthogonality and compatible pair. J. Funct. Anal. 244(2), 628–638 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ortega-Cerdà, J., Seip, K.: Fourier frames, Ann. Math. 155(3), 789–806 (2002)

  14. Strichartz, R.S.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 81, 209–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Dorin Dutkay for assisting with the proof of Claim 1 in Theorem 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Picioroaga.

Additional information

Communicated by Chris Heil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picioroaga, G., Weber, E.S. Fourier Frames for the Cantor-4 Set. J Fourier Anal Appl 23, 324–343 (2017). https://doi.org/10.1007/s00041-016-9471-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9471-0

Keywords

Mathematics Subject Classification

Navigation