Skip to main content
Log in

Leibniz’s Rule, Sampling and Wavelets on Mixed Lebesgue Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Several new results about Leibniz’s rule, sampling, and wavelets in the context of mixed Lebesgue spaces are presented. The results obtained rely in part on vector-valued estimates for Calderón–Zygmund operators and the use of appropriate maximal functions and Littlewood–Paley estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The a priori hypothesis \(f\in L^p\) can be removed if one is willing to work with distributions modulo polynomials. Since the functions \(\Psi _{2^{-j}}\) have spectrum away from the origin, adding a polynomial to \(f\) does not change the right-hand side of (6). However, given a tempered distribution \(f\) there exists a unique polynomial \(P\) such that the \(L^p\) norm of \(f-P\) is controlled by the right-hand side of (6) when this is finite.

References

  1. Benedek, A., Panzone, R.: The space \(L^{p}\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. USA 48, 356–365 (1962)

    Article  MATH  Google Scholar 

  3. Boas, R.: Entire Functions. Academic Press, New York (1954)

    MATH  Google Scholar 

  4. Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)

    MATH  Google Scholar 

  5. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100(1), 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 120(2), 371–397 (1984)

    Article  MATH  Google Scholar 

  7. Duoandikoetxea, J.: Fourier analysis, Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)

    Google Scholar 

  8. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez, D.L.: Vector-valued singular integral operators on \(L^p\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)

    Article  MATH  Google Scholar 

  11. Foschi, D., Klainerman, S.: Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Ecol. Norm. Sup. 33, 211–274 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 522–529 (1985)

    Article  MathSciNet  Google Scholar 

  13. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. AMS, Providence (1991)

    MATH  Google Scholar 

  15. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, Upper Saddle (2004)

    MATH  Google Scholar 

  16. Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  17. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurtz, D.S.: Classical operators on mixed-normed spaces with product weights. Rocky Mt. J. Math. 37(1), 269–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moen, K., Linear and multilinear functional operators: weighted inequalities, sharp bounds, and other properties, Ph.D. Thesis, University of Kansas (2009)

  21. Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plancherel, M., Pólya, G.: Fonctions entières et intégrales de Fourier multiples. Comment. Math. Helv. 10(1), 110–163 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  23. Planchon, F.: Remark on Strichartz estimates for null forms. Differ. Integr. Equ. 15, 697–708 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62(1), 7–48 (1986)

  25. Stefanov, A., Torres, R.H.: Calderón–Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. Lond. Math. Soc. 70(2), 447–462 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Torres, R.H.: Spaces of sequences, sampling theorem, and functions of exponential type. Stud. Math. 100(1), 51–74 (1991)

    MATH  Google Scholar 

  27. Ward, E., New estimates in harmonic analysis for mixed Lebesgue spaces, Ph.D. Thesis, University of Kansas (2010)

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their comments and suggestions. Both authors partially supported by NSF Grant DMS 0800492. First author also partially supported by NSF Grant DMS 1069015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo H. Torres.

Additional information

Communicated by Chris Heil.

Dedicated to the memory of Björn Jawerth.

Appendix

Appendix

We sketch the proof of Corollary 2.3.

Proof

Fix \(1<q<\infty \). We have \(\mathbf{T}:L^q(\mathbb R^{n+1}, \mathbf{B}_1)\rightarrow L^q(\mathbb R^{n+1}, \mathbf{B}_2)\), so that for it is given by a kernel \(\mathbf{K}(u,v):\mathbf{B}_1\rightarrow \mathbf{B}_2\), in the form

$$\begin{aligned} \mathbf{T}f(u) = \int _{\mathbb R^{n+1}}\mathbf{K}(u,v)(f(v)) \, dv \end{aligned}$$

for \(u\) not in the support of \(f\). Writing \(u=(t,x)\in \mathbb R\times \mathbb R^n\) and \(L^q = L^q_tL^q_x\), we can also write

$$\begin{aligned} \mathbf{T}:L^q_tL^q_x(\mathbb R\times \mathbb R^n,\mathbf{B}_1)\rightarrow L^q_tL^q_x(\mathbb R\times \mathbb R^n,\mathbf{B}_2), \end{aligned}$$

with associated kernel \(\mathbf{K}((t,x),(s,y)]):\mathbf{B}_1\rightarrow \mathbf{B}_2\), so that

$$\begin{aligned} \mathbf{T}f(t,x)=\int _{R}\int _{R^n}\mathbf{K}((t,x),(s,y))(f(s,y))\,dyds \end{aligned}$$

for \((t,x)\) not in the support of \(f\). We want to show that the above is true for exponents \(p\) and \(q\) when \(p\ne q\).

With that in mind, we make the identification \(L^p_tL^q_x(\mathbb R\!\times \mathbb R^n,\mathbf{B})\! =\! L^p_t(\mathbb R,L^q_x(\mathbb R^n,\mathbf{B}))\), and set \(L^q(\mathbb R^n,\mathbf{B}_1) = \mathbf{B}_3\) and \(L^q(\mathbb R^n,\mathbf{B}_2) = \mathbf{B}_4\). We can associate to \(\mathbf{T}\), which is bounded from \(L^qL^q(\mathbb R\times \mathbb R^n,\mathbf{B}_1)\) to \(L^qL^q(\mathbb R\times \mathbb R^n,\mathbf{B}_2)\), an operator \(\mathcal {T}\) bounded from \(L^q(\mathbb R,\mathbf{B}_3)\) to \(L^q(\mathbb R,\mathbf{B}_4)\) and with kernel \(\mathcal {K}(t,s): L^q_x(\mathbb R^n,\mathbf{B}_1)\rightarrow L^q_x(\mathbb R^n,\mathbf{B}_2)\), \(t,s\in \mathbb R\), \(t\ne s\), so that

$$\begin{aligned} \mathcal {T}F(t)&= \int _{\mathbb R} \mathcal {K}(t,s) F(s)\, ds \\ \end{aligned}$$

for \(t\) not in the support of \(F(s)\), and so that when \(F(s)= f(s,\cdot )\)

$$\begin{aligned} \mathcal {T}F(t)(x)&= \int _{\mathbb R} \mathcal {K}(t,s)F(s)(x)\, ds \\&= \int _{R}\int _{R^n}\mathbf{K}((t,x),(s,y))(f(s,y))\,dyds\\&= \mathbf{T}f(t,x). \end{aligned}$$

If we show that \(\mathcal {K}\) is bounded and satisfies the two estimates

$$\begin{aligned} \int _{|t-s|\ge 2|s-r|} \Vert \mathcal {K}(t,s) - \mathcal {K}(t,r)\Vert _{\mathbf{B}_3\rightarrow \mathbf{B}_4}dt\le C \end{aligned}$$
(22)
$$\begin{aligned} \int _{|t-s|\ge 2|t-t|} \Vert \mathcal {K}(t,s) - \mathcal {K}(t,s)\Vert _{\mathbf{B}_3\rightarrow \mathbf{B}_4}dt\le C \end{aligned}$$
(23)

then by Theorem 2.1 we will have the desired result (after translating appropriately).

Fixing \(t,s,\in \mathbb R\), \(t\ne s\) we have

$$\begin{aligned} (\mathcal {K}(t,s)H)(x)&= \int _{\mathbb R^n} \mathbf{K}((t,x),(s,y))H(y) \, dy, \end{aligned}$$

with

$$\begin{aligned} \Vert \mathbf{K}((t,x),(s,y)) \Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2}&\lesssim {\frac{1}{|(t,x)-(s,y)|^{n+1}}}\\&\lesssim {\frac{1}{(|t-s|^2+|x-y|^2)^{(n+1)/2}}}. \end{aligned}$$

If we integrate in \(x\) we have,

$$\begin{aligned} \int _{\mathbb R^n}\Vert \mathbf{K}((t,x),(s,y)) \Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2} \, dx&\lesssim \int _{\mathbb R^n} \frac{dx}{(|t-s|^2+|x-y|^2)^{(n+1)/2}}\\&\lesssim \frac{1}{|t-s|^{n+1}} \int _{\mathbb R^n} \frac{dx}{\left( 1+\left( \frac{|x|}{|t-s|}\right) ^2\right) ^{(n+1)/2}}\\&\lesssim \frac{1}{|t-s|}. \end{aligned}$$

Similarly, integrating in \(y\) yields

$$\begin{aligned} \int _{\mathbb R^n}\Vert \mathbf{K}((t,x),(s,y)) \Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2} \, dy \lesssim \frac{1}{|t-s|}. \end{aligned}$$

By the Schur test (which also holds in the vector-valued setting; see e.g. [27] for details), we get that \(\mathcal {K}\) is a bounded operator and

$$\begin{aligned} \Vert \mathcal {K}(t,s)\Vert _{\mathbf{B}_3\rightarrow \mathbf{B}_4} \lesssim \frac{1}{|t-s|}. \end{aligned}$$

The proofs of (22) and (23) are completely analogous. For example, now fix \(t,s,r\in \mathbb R\) with \(|t-s|\ge 2|s-r|\) and define an operator \(G\) as follows:

$$\begin{aligned} G(t,s,r)H(x)&= (\mathcal {K}(t,s)-\mathcal {K}(t,r))H(x)\\&= \int _{\mathbb R^n}\left( \mathbf{K}((t,x),(s,y))- \mathbf{K}((t,x),(r,y))\right) H(y)dy\\&= \int _{\mathbb R^n}g(t,s,r)(x,y)H(y)dy. \end{aligned}$$

Now consider the kernel \(g(t,s,r)(x,y)\). Using (10)

$$\begin{aligned} \Vert g(t,s,r)(x,y)\Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2}&= \Vert \mathbf{K}((t,x),(s,y)) - \mathbf{K}((t,x),(r,y))\Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2}\\&\lesssim {\frac{|(s,y)-(r,y)|^{\delta }}{|(t,x)-(s,y)|^{n+1+\delta }}}\\&\lesssim {\frac{|s-r|^{\delta }}{(|t-s|^2+|x-y|^2)^{(n+1+\delta )/2}}}, \end{aligned}$$

and integrating in \(x\) we have,

$$\begin{aligned} \int _{\mathbb R^n}\Vert g(t,s,r)(x,y)\Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2} \,dx&\lesssim \int _{\mathbb R^n} \frac{|s-r|^{\delta }}{(|t-s|^2+|x-y|^2)^{(n+1+\delta )/2}} \, dx\\&\lesssim {\frac{|s-r|^{\delta }}{|t-s|^{1+\delta }}}. \end{aligned}$$

Likewise, if we integrate in \(y\) we get

$$\begin{aligned} \int _{\mathbb R^n}\Vert g(t,s,r)(x,y)\Vert _{\mathbf{B}_1\rightarrow \mathbf{B}_2}dy \le C\frac{|s-r|^{\delta }}{|t-s|^{1+\delta }}. \end{aligned}$$

Again by the Schur test, \(G(t,s,r)\) maps \(\mathbf{B}_3\) into \(\mathbf{B}_4\) with norm

$$\begin{aligned} \Vert G(t,s,r)\Vert _{\mathbf{B}_3\rightarrow \mathbf{B}_4} = \Vert \mathcal {K}(t,s)-\mathcal {K}(t,r)\Vert _{\mathbf{B}_3\rightarrow \mathbf{B}_4} \le C\frac{|s-r|^{\delta }}{|t-s|^{1+\delta }} \end{aligned}$$

and therefore \(\mathcal {K}\) satisfies (22).

We leave the rest of the details to the interested reader. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R.H., Ward, E.L. Leibniz’s Rule, Sampling and Wavelets on Mixed Lebesgue Spaces. J Fourier Anal Appl 21, 1053–1076 (2015). https://doi.org/10.1007/s00041-015-9397-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9397-y

Keywords

Mathematics Subject Classification

Navigation