Skip to main content
Log in

A Partial Derandomization of PhaseLift Using Spherical Designs

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The problem of retrieving phase information from amplitude measurements alone has appeared in many scientific disciplines over the last century. PhaseLift is a recently introduced algorithm for phase recovery that is computationally tractable, numerically stable, and comes with rigorous performance guarantees. PhaseLift is optimal in the sense that the number of amplitude measurements required for phase reconstruction scales linearly with the dimension of the signal. However, it specifically demands Gaussian random measurement vectors—a limitation that restricts practical utility and obscures the specific properties of measurement ensembles that enable phase retrieval. Here we present a partial derandomization of PhaseLift that only requires sampling from certain polynomial size vector configurations, called \(t\) -designs. Such configurations have been studied in algebraic combinatorics, coding theory, and quantum information. We prove reconstruction guarantees for a number of measurements that depends on the degree \(t\) of the design. If the degree is allowed to grow logarithmically with the dimension, the bounds become tight up to polylog-factors. Beyond the specific case of PhaseLift, this work highlights the utility of spherical designs for the derandomization of data recovery schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The definition of a \(t\)-design varies between authors. In particular, what is called a \(t\)-design here (and in most of the physics literature), would sometimes be referred to as a \(2t\) or even a \((2t+1)\)-design. See Sect. 3.3 for our precise definition.

  2. While stated only for dimensions that are a power of \(2\), the results can be used for construtions in arbitrary dimensions [49].

  3. The situation is comparable to the use of random graphs as randomness expanders [43].

  4. Alternatively one could also rearrange tensor systems: \(X^{\otimes k} = (x x^*)^{\otimes k} \simeq x^{\otimes k} (x^*)^{\otimes k}\) and use \(P_{{{\mathrm{Sym}}}^k} x^{\otimes k} = x^{\otimes k}\).

  5. The use of pseudo-code allows for a compact presentation of this randomized procedure. However, the reader should keep in mind that the construction is purely part of a proof and should not be confused with the recovery algorithm (which is given in Eq. (24)).

  6. It was pointed out to us by A. Hansen that in some previous papers [35, 50] which involve a similar construction to the one presented here, it was tacitly assumed that the \(\xi _i\) are independent. This will of course not be true in general. Fortunately, a more careful argument shows that all conclusions remain valid [1]. Our treatment here is similar to the one presented in [1].

References

  1. Adcock, B., Hansen, A.C.: Generalized Sampling and Infinite-Dimensional Compressed Sensing, Technical Report NA2011/02, DAMTP. University of Cambridge, Cambridge (2011)

    Google Scholar 

  2. Ahlswede, R., Winter, A.: Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory 48, 569–579 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7, 35–66 (2014)

    Article  MATH  Google Scholar 

  4. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proceedings of the 22nd Annual IEEE Conference on Computational Complexity, pp. 129–140 ( 2007)

  5. Bachoc, C., Venkov, B.: Modular forms, lattices and spherical designs. In: Euclidean Lattices, Spherical Designs and Modular Forms, pp. 87–111. On the works of Boris Venkov. L’Enseignement Mathématique, Genève (2001)

  6. Bachoc, C., Ehler, M.: Tight p-fusion frames. Appl. Comput. Harmon. Anal. 35, 1–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bajnok, B.: Construction of spherical \(t\)-designs. Geom. Dedic. 43, 167–179 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488–501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf. Inference (2014). doi:10.1093/imaiai/iau002

  11. Baraniuk, R.G., Davenport, M., DeVore, R.A., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. approx. 28, 253–263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barvinok, A.: A Course in Convexity. American Mathematical Society (AMS), Providence (2002)

    Book  MATH  Google Scholar 

  13. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Hybrid projection–reflection method for phase retrieval. JOSA A 20, 1025–1034 (2003)

    Article  Google Scholar 

  14. Bhatia, R.: Matrix Analysis. Springer, New York (1996)

    MATH  Google Scholar 

  15. Brandao, F.G., Harrow, A.W., Horodecki, M.: Local random quantum circuits are approximate polynomial-designs. arXiv:1208.0692 (2012)

  16. Bruck, Y.M., Sodin, L.: On the ambiguity of the image reconstruction problem. Opt. Commun. 30, 304–308 (1979)

    Article  Google Scholar 

  17. Candes, E., Li, X., Soltanolkotabi, M.: Phase retrieval from masked fourier transforms. Appl. Comput. Harmon. Anal. arXiv:1310.3240 (to appear)

  18. Candès, E., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math., 1–10 (2013)

  19. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MATH  Google Scholar 

  21. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inform. Theory 56, 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  22. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

    Article  MATH  Google Scholar 

  24. Cvitanović, P.: Group Theory. Birdtracks, Lie’s, and Exceptional Groups. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  25. Delsarte, P., Goethals, J., Seidel, J.: Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  26. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

    Article  MATH  Google Scholar 

  27. Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multiscale Model. Simul. 12, 725–754 (2014)

    Article  MathSciNet  Google Scholar 

  28. Eldar, Y.C., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon. Anal. 36, 473–494 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Feller, W.: An Introduction to Probability Theory and its Applications. I. Wiley, New York (1968)

    MATH  Google Scholar 

  30. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  Google Scholar 

  31. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. dissertation, California Institute of Technology (1997)

  32. Gottesman, D.: The Heisenberg representation of quantum computers. In: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, pp. 32–43. International Press, Cambridge (1999)

  33. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control, Ser. Lecture Notes in Control and Information Sciences, Springer-Verlag Limited, London, pp. 95–110. http://stanford.edu/~boyd/graph_dcp.html (2008). Accessed 13 Oct 2014

  34. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014). Accessed 13 Oct 2014

  35. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory 57, 1548–1566 (2011)

    Article  MathSciNet  Google Scholar 

  36. Gross, D., Audenaert, K., Eisert, J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, pp. 052 104, 22 (2007)

  37. Gross, D., Krahmer, F., Kueng, R.: Improved recovery guarantees for phase retrieval from coded diffraction patterns. arXiv:1402.6286 (2014)

  38. Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: State tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010)

    Article  Google Scholar 

  39. Habib, M., McDiarmid, C., Ramírez Alfonsín, J., Reed, B. (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Berlin (1998)

    MATH  Google Scholar 

  40. Hayashi, A., Hashimoto, T., Horibe, M.: Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032301 (2005)

    Article  Google Scholar 

  41. Heinosaari, T., Mazzarella, L., Wolf, M.M.: Quantum tomography under prior information. Commun. Math. Phys. 318, 355–374 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hoggar, S.: t-Designs in projective spaces. Eur. J. Comb. 3, 233–254 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43, 439–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: Finite Fields and Applications. 7th International Conference, \({\mathbb{F}}_{q^7}\), pp. 137–144. Springer, Berlin (2004)

  45. Klappenecker, A., Rotteler, M.: Mutually unbiased bases are complex projective 2-designs. In: 2005 IEEE International Symposium on Information Theory (ISIT), vols. 1, 2, pp. 1740–1744 (2005)

  46. König, H.: Cubature formulas on spheres. In: Advances in Multivariate Approximation. Proceedings of the 3rd International Conference on Multivariate Approximation Theory, pp. 201–211. Wiley-VCH, Berlin (1999)

  47. Korevaar, J., Meyers, J.: Chebyshev-type quadrature on multidimensional domains. J. Approx. Theory 79, 144–164 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Krahmer, F., Rauhut, H.: Structured random measurements in signal processing. arXiv:1401.1106 (2014)

  49. Kueng, R., Gross, D.: Stabilizer states are complex projective 3-designs in qubit dimensions. (in preparation)

  50. Kueng, R., Gross, D.: RIPless compressed sensing from anisotropic measurements. Lin. Alg. Appl. 441, 110–123 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. Landsberg, J.M.: Tensors: Geometry and Applications. American Mathematical Society (AMS), Providence (2012)

  52. Levenshtein, V.I.: Universal bounds for codes and designs. In: Handbook of Coding Theory. Part 1: Algebraic Coding, vol. 1, pp. 499–648. Elsevier, Amsterdam (1998)

  53. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. SIAM J. Math Anal. 45, 3019–3033 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu, Y.-K.: Universal low-rank matrix recovery from pauli measurements. Adv. Neural Inf. Process. Syst. 24, 1638–1646 (2011)

    Google Scholar 

  55. Low, R.A.: Large deviation bounds for \(k\)-designs. Proc. R. Soc. Lond. Ser. A 465, 3289–3308 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Luby, M., Wigderson, A.: Pairwise independence and derandomization. Print version of Foundations and Trends in Theoretical Computer Science, Vol. 1, No. 4 (2005), print version of foundations and trends in theoretical computer science vol. 1, no. 4 (2005) ed. Boston, MA (2006)

  57. Millane, R.: Phase retrieval in crystallography and optics. JOSA A 7, 394–411 (1990)

    Article  Google Scholar 

  58. Mixon, D.: Short, Fat Matrices, Blog, 2013. http://dustingmixon.wordpress.com/. Accessed 13 Oct 2014

  59. Mondragon, D., Voroninski, V.: Determination of all pure quantum states from a minimal number of observables. arXiv:1306.1214 (2013)

  60. Nebe, G., Rains, E., Sloane, N.: The invariants of the Clifford groups. Des. Codes Cryptogr. 24, 99–121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  61. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Advances in Neural Information Processing Systems, pp. 2796–2804 (2013)

  62. Neumaier, A.: Combinatorial Configurations in Terms of Distances. Department of Mathematics Memorandum, Eindhoven (1981)

    Google Scholar 

  63. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  64. Renes, J.M., Blume-Kohout, R., Scott, A., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  65. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025–1045 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  66. Sanderson, B.: Immersions and embeddings of projective spaces. Proc. Lond. Math. Soc. 3(14), 137–153 (1964)

  67. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570–579 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  68. Scott, A.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507–13530 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  69. Seymour, P., Zaslavsky, T.: Averaging sets: a generalization of mean values and spherical designs. Adv. Math. 52, 213–240 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  70. Sidelnikov, V.: Spherical 7-designs in \(2^n\)-dimensional Euclidean space. J. Algebr. Comb. 10, 279–288 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  71. Tropp, J. A.: User-friendly tools for random matrices: an introduction, notes. http://users.cms.caltech.edu/~jtropp/notes/Tro12-User-Friendly-Tools-NIPS.pdf (2012). Accessed 13 Oct 2014

  72. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12, 389–434 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  73. Turaev, V.: Quantum Invariants of Knots and 3-Manifolds. Walter de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  74. Watrous, J.: Theory of quantum information, lecture notes. https://cs.uwaterloo.ca/~watrous/LectureNotes.html (2011). Accessed 13 Oct 2014

  75. Zauner, G.: Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie. Ph.D. dissertation, University of Vienna (1999)

Download references

Acknowledgments

DG and RK are grateful to the organizers and participants of the Workshop on Phaseless Reconstruction, held as part of the 2013 February Fourier Talks at the University of Maryland, where they were introduced to the details of the problem. This extends, in particular, to Thomas Strohmer. The work of DG and RK is supported by the Excellence Initiative of the German Federal and State Governments (Grant ZUK 43), by scholarship funds from the State Graduate Funding Program of Baden-Württemberg, and by the US Army Research Office under contracts W911NF-14-1-0098 and W911NF-14-1-0133 (Quantum Characterization, Verification, and Validation), and the DFG. FK acknowledges support from the German Federal Ministry of Education and Reseach (BMBF) through the cooperative research project ZeMat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kueng.

Additional information

Communicated by Thomas Strohmer.

Appendix

Appendix

Here we briefly state an elementary proof of Lemma 6. In the main text we proved this result using wiring diagrams. The purpose of this is to underline the relative simplicity of wiring diagram calculations. Indeed, the elementary proof below is considerably more cumbersome than its pictorial counterpart.

1.1 Elementary Proof of Lemma 6

Let us choose an arbitrary orthonormal basis \(b_1, \ldots ,b_d\) of \(V^d\). In the induced basis \(\left\{ b_i \otimes b_j \right\} _{i,j=1}^d\) of \(V^d \otimes V^d\) the transpositions then correspond to

$$\begin{aligned} \underline{1} = \mathbb {1}\otimes \mathbb {1}= \sum _{i=1}^d b_i b_i^* \otimes \sum _{j=1}^d b_j b_j^* \quad \text {and} \quad \sigma _{(1,2)} = \sum _{i,j=1}^d b_i b_j^* \otimes b_j b_i^*. \end{aligned}$$

This choice of basis furthermore allows us to write down \({{\mathrm{tr}}}_2 (A)\) for \(A \in M^d \otimes M^d\) explicitly:

$$\begin{aligned} {{\mathrm{tr}}}_2 (A) = \sum _{i=1}^d \left( \mathbb {1}\otimes b_i^* \right) A \left( \mathbb {1}\otimes b_i \right) . \end{aligned}$$

Consequently we get for \(A,B \in H^d\) arbitrary

$$\begin{aligned} {{\mathrm{tr}}}_2 \left( P_{{{\mathrm{Sym}}}^2} A \otimes B \right) = \frac{1}{2} {{\mathrm{tr}}}_2 \left( A \otimes B \right) + \frac{1}{2} {{\mathrm{tr}}}_2 \left( \sigma _{(1,2)} A \otimes B \right) . \end{aligned}$$

The latter term can be evaluated explicitly:

$$\begin{aligned} {{\mathrm{tr}}}_2 \left( \sigma _{(1,2)} A \otimes B \right)&= \sum _{k=1}^d \left( \mathbb {1}\otimes b_k^* \right) \sum _{i,j=1}^d b_i b_j^* \otimes b_j b_i^* A \otimes B \left( \mathbb {1}\otimes b_k \right) \\&= \sum _{i,j,k=1}^d b_i b_j^* A b_k^* b_j b_i^* B b_k = \sum _{i,j=1}^d \langle b_i, B b_j \rangle b_i b_j^* A \\&= \left( \sum _{i=1}^d b_i b_i ^* \right) B \left( \sum _{j=1}^d b_j b_j^* \right) A = \mathbb {1}B \mathbb {1}A = B A, \end{aligned}$$

and the desired result follows. Here we have used the basis representation of the identity, namely \(\mathbb {1}= \sum _{i=1}^d b_i b_i^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, D., Krahmer, F. & Kueng, R. A Partial Derandomization of PhaseLift Using Spherical Designs. J Fourier Anal Appl 21, 229–266 (2015). https://doi.org/10.1007/s00041-014-9361-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9361-2

Keywords

Mathematics Subject Classification

Navigation