Skip to main content
Log in

Growth and Integrability of Fourier Transforms on Euclidean Space

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A fundamental theme in classical Fourier analysis relates smoothness properties of functions to the growth and/or integrability of their Fourier transform. By using a suitable class of \(L^{p}\)-multipliers, a rather general inequality controlling the size of Fourier transforms for large and small argument is obtained. As consequences, quantitative Riemann–Lebesgue estimates are obtained and an integrability result for the Fourier transform is developed extending ideas used by Titchmarsh in the one dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Fourier inversion actually holds everywhere. The Fourier inversion integral defines a continuous function which is equal to \(f\) a.e. This remark also applies to Corollaries 3.5, 4.4, and 4.6.

  2. The result is stated in a form appropriate for our use; the hypothesis on \(\psi \) can be weakened. It is a generalization of an asymptotic result for the Fourier cosine transform (endpoint case of \(\mu =-1/2\)) due to Titchmarsh [17, Theorem 126].

References

  1. Benedetto, J.J., Heinig, H.P.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), p1–37 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bray, W.O., Pinsky, M.A.: Growth properties of Fourier transforms via moduli of continuity. J. Funct. Anal. 255, p2265–2285 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bray, W.O., Pinsky, M.A.: Growth properties of the Fourier transform, Filomat 26:4, University of Nis, http://www.pmf.ni.ac.rs/pmf/publikacije/filomat/filomat_pocetna.php, p755–760 (2012); originally posted at arXiv:0910.1115v1 (2009)

  4. Dai, F., Ditzian, Z.: Combinations of multivariate averages. J. Approx. Theory 131, p268–283 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ditzian, Z.: Smoothness of a function and the growth of its Fourier transform or its Fourier coefficients. J. Approx. Theory 162, p980–986 (2010)

    Article  MathSciNet  Google Scholar 

  6. Ditzian, Z.: Relating smoothness to expressions involving Fourier coefficients or to a Fourier transform. J. Approx. Theory 164, p1369–1389 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. d’Analyse Math. 61, p61–111 (1991)

    Article  MathSciNet  Google Scholar 

  8. Gioev, D.: Moduli of continuity and average decay of Fourier transforms: two sided estimates. Contemp. Math., Am. Math. Soc. 458, 377–392 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gorbachev, D., Tikhonov, S.: Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates. J. Approx. Theory 164, p1283–1312 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gorbachev, D., Liflyand, E., Tikhonov, S.: Weighted Fourier inequalities: Boas conjecture in \(\mathbb{R}^{n}\). J. D’Analyse Math. 114, p99–120 (2011)

    Article  MathSciNet  Google Scholar 

  11. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Math, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Lebedev, N.N.: Special Functions and their Application. Dover, New York (1972)

    Google Scholar 

  13. Pinsky, M.A.: Pointwise Fourier inversion and related eigenfunction expansions. Commun. Pure Appl. Math. 47, 653–681 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pinsky, M.A., Taylor, M.E.: Pointwise Fourier inversion: a wave equation approach. J. Fourier Anal. Appl. 3(6), 647–703 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Platonov, S.S.: The Fourier transform of functions satisfying the Lipschitz condition on rank one symmetric spaces. Sib. Math. J. 45(6), 1108–1118 (2005)

    Article  MathSciNet  Google Scholar 

  16. Stein, E.: Maximal functions: spherical means. Proc. Natl. Acad. Sci. USA 73(7), 2174–2175 (1976)

    Article  MATH  Google Scholar 

  17. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford (1937)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the referee for several suggestions improving the exposition in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William O. Bray.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bray, W.O. Growth and Integrability of Fourier Transforms on Euclidean Space. J Fourier Anal Appl 20, 1234–1256 (2014). https://doi.org/10.1007/s00041-014-9354-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9354-1

Keywords

Mathematics Subject Classification

Navigation