Skip to main content
Log in

On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Our main purpose in this article is to establish a Gagliardo-Nirenberg type inequality in the critical Sobolev–Morrey space \(H\mathcal{M}^{\frac{n}{p}}_{p,q}(\mathbb{R}^{n})\) with n∈ℕ and 1<qp<∞, which coincides with the usual critical Sobolev space \(H^{\frac{n}{p}}_{p}(\mathbb{R}^{n})\) in the case of q=p. Indeed, we shall show the following interpolation inequality. If q<p, there exists a positive constant C p,q depending only on p and q such that

$$ \|f\|_{{\mathcal{M}}_{r,\frac{q}{p}r}} \leq C_{p,q}r\|f \|_{{\mathcal{M}}_{p,q}}^{\frac{p}{r}}\bigl\|(-\Delta)^{\frac{n}{2p}} f\bigr\|_{{\mathcal{M}}_{p,q}}^{1-\frac{p}{r}} $$
(GN)

for all \(u\in H\mathcal{M}^{\frac{n}{p}}_{p,q}( \mathbb{R}^{n})\) and for all pr<∞. In the case of q=p, that is, the case of the critical Sobolev space \(H^{\frac{n}{p}}_{p}(\mathbb{R}^{n})\), the corresponding inequality was obtained in Ogawa (Nonlinear Anal. 14:765–769, 1990), Ogawa-Ozawa (J. Math. Anal. Appl. 155:531–540, 1991) and Ozawa (J. Func. Anal. 127:259–269, 1995) with the growth order \(r^{1-\frac{1}{p}}\) as r→∞. The inequality (GN) implies that the growth order as r→∞ is linear, which might look worse compared to the case of the critical Sobolev space. However, we investigate the optimality of the growth order and prove that this linear order is best-possible. Furthermore, as several applications of the inequality (GN), we shall obtain a Trudinger-Moser type inequality and a Brézis-Gallouët-Wainger type inequality in the critical Sobolev-Morrey space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: A scale-invariant form of Trudinger-Moser inequality and its best exponent. Proc. Am. Math. Soc. 1102, 148–153 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MATH  Google Scholar 

  3. Brézis, H., Gallouët, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–779 (1980)

    Article  MATH  Google Scholar 

  5. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Engler, H.: An alternative proof of the Brézis-Wainger inequality. Commun. Partial Differ. Equ. 14, 541–544 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)

    MATH  Google Scholar 

  9. Hedberg, L.-I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  Google Scholar 

  10. Ibrahim, S., Majdoub, M., Masmoudi, N.: Double logarithmic inequality with a sharp constant. Proc. Am. Math. Soc. 135(1), 87–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jia, H., Wang, H.: Decomposition of Hardy-Morrey spaces. J. Math. Anal. Appl. 354, 99–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality. Indiana Univ. Math. J. 55, 1951–1974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kozono, H., Wadade, H.: Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurata, K., Nishigaki, S., Sugano, S.: Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators. Proc. Am. Math. Soc. 128, 1125–1134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morii, K., Sato, T., Sawano, Y., Wadade, H.: Sharp constants of Brézis-Gallouët-Wainger type inequalities with a double logarithmic term on bounded domains in Besov and Triebel-Lizorkin spaces. Bound. Value Probl., 584521 (2010)

  18. Morii, K., Sato, T., Wadade, H.: Brézis-Gallouët-Wainger inequality with a double logarithmic term on a bounded domain and its sharp constants. Math. Inequal. Appl. 14, 295–312 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Morii, K., Sato, T., Wadade, H.: Brézis-Gallouët-Wainger type inequality with a double logarithmic term in the Hölder space: its sharp constants and extremal functions. Nonlinear Anal. 73, 1747–1766 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morii, K., Sawano, Y.: Lower bound for sharp constants of Brézis-Gallouët-Wainger type inequalities in higher order critical Sobolev spaces on bounded domains. Commun. Math. Anal. 12, 1–16 (2011)

    MathSciNet  Google Scholar 

  21. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

    Article  Google Scholar 

  22. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagayasu, S., Wadade, H.: Characterization of the critical Sobolev space on the optimal singularity at the origin. J. Funct. Anal. 258, 3725–3757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakai, E.: Generalized Fractional Integrals on Orlicz-Morrey Spaces, Banach and Function Spaces, pp. 323–333. Yokohama, Yokohama (2004)

    Google Scholar 

  25. Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math. 188, 193–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Najafov, A.M.: Embedding theorems in the Sobolev-Morrey type spaces \(S^{l}_{p,a,\kappa,r}W(G)\) with dominant mixed derivatives. Sib. Math. J. 47, 613–625 (2006)

    Google Scholar 

  28. Najafov, A.M.: On some properties of the functions from Sobolev-Morrey type spaces. Cent. Eur. J. Math. 3, 496–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Najafov, A.M.: Some properties of functions from the intersection of Besov-Morrey type spaces with dominant mixed derivatives. Proc. A. Razmadze Math. Inst. 139, 71–82 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equation. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ogawa, T., Ozawa, T.: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl. 155, 531–540 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ozawa, T.: Characterization of Trudinger’s inequality. J. Inequal. Appl. 1, 369–374 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sawano, Y.: A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Acta Math. Sin. Engl. Ser. 25, 1223–1242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sawano, Y.: Brézis-Gallouët-Wainger type inequality for Besov-Morrey spaces. Studia Math. 196, 91–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sawano, Y., Sobukawa, T., Tanaka, H.: Limiting case of the boundedness of fractional integral operators on nonhomogeneous space. J. Inequal. Appl., 1–16 (2006)

  37. Sawano, Y., Sugano, S., Tanaka, H.: A note on generalized fractional integral operators on generalized Morrey space. Bound. Value Probl., 835865, 18 pp. (2010)

  38. Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Transl. Am. Math. Soc. 363(12), 6481–6503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sawano, Y., Sugano, S., Tanaka, H.: Identification of the image of Morrey spaces by the fractional integral operators. Proc. A. Razmadze Math. Inst. 149, 87–93 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Sawano, Y., Tanaka, H.: Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z. 257, 871–905 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  42. Taibleson, M.H.: On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal properties. J. Math. Mech. 13, 407–479 (1964)

    MathSciNet  Google Scholar 

  43. Tang, L., Xu, J.: Some properties of Morrey type Besov-Triebel spaces. Math. Nachr. 278, 904–917 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  45. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  46. Wadade, H.: Remarks on the Gagliardo-Nirenberg type inequality in the Besov and the Triebel-Lizorkin spaces in the limiting case. J. Fourier Anal. Appl. 15, 857–870 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wadade, H.: Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces. Studia Math. 201, 227–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Sawano.

Additional information

Communicated by Hans Triebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawano, Y., Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space. J Fourier Anal Appl 19, 20–47 (2013). https://doi.org/10.1007/s00041-012-9223-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9223-8

Keywords

Mathematics Subject Classification

Navigation