Skip to main content
Log in

Intracolony chemical communication in social insects

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Chemical messengers are the primary mode of intracolony communication in the majority of social insect species. Chemically transmitted information plays a major role in nestmate recognition and kin recognition. Physical and behavioral castes often differ in chemical signature, and queen effects can be significant regulators of behavior and reproduction. Chemical messengers themselves differ in molecular structure, and the effects on behavior and other variables can differ as a consequence of not only molecular structure of the chemical messenger itself but also of its temporal expression, quantity, chemical blends with other compounds, and effects of the environment. The most studied, and probably the most widespread, intracolony chemical messengers are cuticular hydrocarbons (CHCs). CHCs are diverse and have been well studied in social insects with regard to both chemical structure and their role as pheromones. CHCs and other chemical messengers can be distributed among colony members via physical contact, grooming, trophallaxis, and contact with the nesting substrate. Widespread intracolony distribution of chemical messengers gives each colony a specific odor whereby colony members are integrated into the social life of the colony and non-members of the colony are excluded. Colony odor can vary as a function of genetic diversity within the colony, and the odor of a colony can change as a function of colony age and environmental effects. Chemical messengers can disseminate information on the presence of reproductives and fertility of the queen(s) and workers, and queen pheromone can play a significant role in suppressing reproduction by other colony members. New analytical tools and new avenues of investigation can continue to expand knowledge of how individual insects function as members of a society and how the society functions as a collective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akino T., Yamamura K., Wakamura S. and Yamaoka R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39: 381-387

    Google Scholar 

  • Arnold G., Quenet B., Cornuet J.M., Masson C., De Schepper B., Estoup A. and Gasqui P. 1996. Kin recognition in honeybees. Nature 379: 498

    Google Scholar 

  • Aubert A. and Richard F.-J. 2008. Social management of LPS-induced inflammation in Formica polyctena ants. Brain Behav. Immun. 22: 833-837

    Google Scholar 

  • Backx A.G., Guzman-Novoa E. and Thompson G.J. 2012. Factors affecting ovary activation in honey bee workers: a meta-analysis. Insect. Soc. 59: 381-388

    Google Scholar 

  • Bagnères A.G. and Blomquist G.J. 2010. Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 75-99

  • Baker T.C. 2011. Insect pheromones: useful lessons for crustacean pheromone programs? In: Chemical Communication in Crustaceans (Breithaupt T. and Thiel M., Eds). Springer Science, pp 531-550

  • Barron A.B. and Robinson G.E. 2008. The utility of behavioral models and modules in molecular analyses of social behavior. Genes Brain Behav. 7: 257-265

    Google Scholar 

  • Bennett B. 1989. Nestmate recognition systems in a monogynous-polygynous species pair of ants (Hymenoptera: Formicidae). I. Worker and queen derived cues. Sociobiology 16: 121-139

    Google Scholar 

  • Beye M., Neumann P., Chapuisat M., Pamilo P. and Moritz R.F.A. 1998. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43: 67-72

    Google Scholar 

  • Beye M., Neumann P. and Moritz R.F.A. 1997. Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena. Insect. Soc. 44: 49-58

    Google Scholar 

  • Bhadra A., Mitra A., Deshpande S., Chandrasekhar K., Naik D., Hefetz A. and Gadagkar R. 2010. Regulation of reproduction in the primitively eusocial wasp Ropalidia marginata: on the trail of the queen pheromone. J. Chem. Ecol. 36: 424-431

    Google Scholar 

  • Billen J. 2011. Exocrine glands and their key function in the communication system of social insects. Formosan Entomol. 31: 75-84

    Google Scholar 

  • Billen J. and Morgan E.D. 1998. Pheromone communication in social insects: sources and secretions. In: Pheromone Communication in Social Insects Ants, Wasps, Bees, and Termites (Vander Meer R.K., Breed M.D., Espelie K.E. and Winston M.L., Eds). Westview Press, Boulder, Colorado, pp 3-33

  • Blomquist G.J. and Bagnères A.G. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, New York

  • Boomsma J.J. and Franks N.R. 2006. Social insects: from selfish genes to self organization and beyond. Trends Ecol. Evol. 21: 303-308

    Google Scholar 

  • Boomsma J.J., Nielsen J., Sundström L., Oldham N.J., Tentschert J., Petersen H.C. and Morgan E.D. 2003. Informational constraints on optimal sex allocation in ants. Proc. Natl Acad. Sci. USA 100: 8799-8804

    Google Scholar 

  • Borges A.A., Ferreira-Caliman M.J., Nascimento F.S., Campos L.A.O. and Tavares M.G. 2012. Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata. Insect. Soc. 59: 479-486

    Google Scholar 

  • Böröczky K., Wada-Katsumata A., Batchelor D., Zhukovskaya M. and Schal C. 2013. Insects groom their antennae to enhance olfactory acuity. Proc. Natl Acad. Sci. USA (in press)

  • Bos N., Lefevre T., Jensen A.B. and D’Ettorre P. 2012. Sick ants become unsociable. J. Evol. Biol. 25: 342-351

    Google Scholar 

  • Boulay R., Hefetz A., Soroker V. and Lenoir A. 2000. Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Anim. Behav. 59: 1127-1133

    Google Scholar 

  • Boulay R., Katzav-Gozansky T., Hefetz A. and Lenoir A. 2004. Odour convergence and tolerance between nestmates through trophallaxis and grooming in the ant Camponotus fellah (Dalla Torre). Insect. Soc. 51: 55-61

    Google Scholar 

  • Bourke A.F.G. 2011. Principles of Social Evolution. Oxford University Press, New York.

  • Bowden R.M., Williamson M. and Breed M.D. 1998. Floral oils: their effect on nestmate recognition in the honey bee, Apis mellifera. Insect. Soc. 45: 209-214

    Google Scholar 

  • Brady S., Sipes S., Pearson A. and Danforth B. 2006. Recent simultaneous origins of eusociality in halictid bees. Proc. R. Soc. B 273: 1643-1649

    Google Scholar 

  • Brandstaetter A.S., Endler A. and Kleineidam C.J. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95: 601-608

    Google Scholar 

  • Breed M. 1998a. Recognition pheromones of the honey bee. Bioscience 48: 463-470

    Google Scholar 

  • Breed M., Perry S. and Bjostad L.B. 2004. Testing the blank state hypothesis: why honey bee colonies accept young bees. Insect. Soc. 51: 12-16

    Google Scholar 

  • Breed M.D. 1998b. Chemical cues in kin-recognition: criteria for identification, experimental approaches, and the honey bee as an example. In: Pheromone Communication in Social Insects (Vander Meer R.K., Breed M.D., Espelie C. and Winston M., Eds). Boulder, CO: Westview Press, pp 57-78

  • Breed M.D., Leger E.A., Pearce A.N. and Wang Y.J. 1998. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55: 13-20

    Google Scholar 

  • Brockmann A., Groh C. and Fröhlich B. 2003. Wax perception in honeybees: contact is not necessary. Naturwissenschaften 90: 424-427

    Google Scholar 

  • Bruschini C., Cervo R., Cini A., Pieraccini G., Pontieri L., Signorotti L. and Turillazzi S. 2011. Cuticular hydrocarbons rather than peptides are responsible for nestmate recognition in Polistes dominulus. Chem. Senses 36: 715-723

    Google Scholar 

  • Bruschini C., Cervo R. and Turillazzi S. 2010. Pheromones in social wasps. In: Vitamins and Hormones (Klitwack G., Ed). Academic Press, Burlington, Massachusetts, pp 447-492

  • Buczkowski G., Kumar R., Suib S.L. and Silverman J. 2005. Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J. Chem. Ecol 31: 829-843

    Google Scholar 

  • Buffin A., Mailleux A.C., Detrain C. and Deneubourg J.L. 2011. Trophallaxis in Lasius niger: a variable frequency and constant duration for three food types. Insect. Soc. 58: 177-183

    Google Scholar 

  • Butler C.G. and Fairey E.M. 1963. The role of the queen in preventing oogenesis in worker honey bees. J. Apic. Res. 2: 14-18

    Google Scholar 

  • Caldera E.J. and Holway D.A. 2004. Evidence that queens do not influence nestmate recognition in Argentine ants. Insect. Soc. 51: 109-112

    Google Scholar 

  • Candolin U. 2003. The use of multiple cues in mate choice. Biol. Rev 78: 575-595

    Google Scholar 

  • Carlin N.F. and Hölldobler B. 1987. The kin recognition system of carpenter ants (Camponotus spp.) II. Larger colonies. Behav. Ecol. Sociobiol. 20: 209 - 217

    Google Scholar 

  • Cervo R., Dani F.R., Zanetti P., Massolo A. and Turillazzi S. 2002. Chemical nestmate recognition in a stenogastrine wasp, Liostenogaster flavolineata (Hymenoptera: Vespidae). Ethol. Ecol. Evol. 14: 351-363

    Google Scholar 

  • Chapuisat M., Bernasconi C., Hoehn S. and Reuter M. 2005. Nestmate recognition in the unicolonial ant Formica paralugubris. Behav. Ecol. 16: 15-19

    Google Scholar 

  • Cotoneschi C., Dani F.R., Cervo R., Sledge M.F. and Turillazzi S. 2007. Polistes dominulus (Hymenoptera: Vespidae) larva possess their own chemical signature. J. Insect Physiol. 53: 954-963

    Google Scholar 

  • Couvillon M.J. and Ratnieks F.L.W. 2008. Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable-absent” recognition system. Behav. Ecol. Sociobiol. 62: 1099-1105

    Google Scholar 

  • Crosland M.W.J. 1989. Kin recognition in the ant Rhytidoponera confusa. I. Environmental odour. Anim. Behav. 37: 912-919

    Google Scholar 

  • Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies. Oxford University Press, Oxford

  • Cuvillier-Hot V., Cobb M., Malosse C. and Peeters C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47: 485-493

    Google Scholar 

  • Cuvillier-Hot V., Gadagkar R., Peeters C. and Cobb M. 2002. Regulation of reproduction in a queenless ant: aggression, pheromones and reduction in conflict. Proc. R. Soc. Lond. B 269: 1295-1300

    Google Scholar 

  • Cuvillier-Hot V., Lenoir A., Crewe R., Malosse C. and Peeters C. 2004. Fertility signaling and reproductive skew in queenless ants. Anim. Behav. 68: 1209-1219

    Google Scholar 

  • Dahbi A., Cerdà X. and Lenoir A. 1998a. Ontogeny of colonial hydrocarbon label in callow workers of the ant Cataglyphis iberica. Anim. Physiol. 321: 395-402

  • Dahbi A., Hefetz A., Cerdà X. and Lenoir A. 1999. Trophallaxis mediates uniformity of colony odor in Cataglyphis iberica ants (Hymenoptera, Formicidae). J. Insect Behav. 12: 559-567

    Google Scholar 

  • Dahbi A. and Lenoir A. 1998b. Nest separation and the dynamics of the Gestalt odor in the polydomous ant Cataglyphis iberica (Hymenoptra, Formicidae). Behav. Ecol. Sociobiol 42: 349-355

  • Dani F.R., Corsi S., Pradella D., Jones G.R. and Turillazzi S. 2004a. GC-MS analysis of the epicuticule lipids of Apis mellifera reared in central Italy. Insect Social Life 5: 103-109

  • Dani F.R., Foster K.R., Zacchi F., Seppä P., Massolo A. et al. 2004b. Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proc. R. Soc. Lond. B 271: 745-753

  • Dani F.R., Fratini S. and Turillazzi S. 1996. Behavioural evidence for involvement of Dufour’s gland secretion in nestmate recognition in the social wasp Polistes dominulus (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 38: 311-319

    Google Scholar 

  • Dani F.R., Jones G.R., Corsi S., Beard R., Pradella D. and Turillazzi S. 2005. Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem. Senses 30: 477-489

    Google Scholar 

  • Dani F.R., Jones G.R., Destri S., Spencer S.H. and Turillazzi S. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62: 165-171

    Google Scholar 

  • Dani F.R., Jones G.R., Morgan E.D. and Turillazzi S. 2003. Reevaluation of the chemical secretion of the sternal glands of Polistes social wasps (Hymenoptera Vespidae). Ethol. Ecol. Evol. 15: 73-82

    Google Scholar 

  • Dapporto L., Lambardi D. and Turillazzi S. 2008. Not only cuticular lipids: first evidence of differences between foundresses and their daughters in polar substances in the paper wasp Polistes dominulus. J. Insect Physiol. 54: 89-95

    Google Scholar 

  • De Biseau J.-C., Passera L., Daloze D. and Aron S. 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profiles in the highly polygynous ant, Linepithema humile. J. Insect Physiol. 50: 585-593

    Google Scholar 

  • Del Piccolo F., Nazzi F., Della Vedova G. and Milani N. 2010. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 137: 967-973

    Google Scholar 

  • Denis D., Blatrix R. and Fresneau D. 2006. How an ant manages to display individual and colonial signals by using the same channel. J. Chem. Ecol 32: 1647-1661

    Google Scholar 

  • Dietemann V., Hölldobler B. and Peeters C. 2002. Caste specialization and differentiation in reproductive potential in the phylogenetically primitive ant Myrmecia gulosa. Insect. Soc. 49: 289-298

    Google Scholar 

  • Dietemann V. and Peeters C. 2000. Queen influence on the shift from trophic to reproductive eggs laid by workers of Pachycondyla apicalis. Insect. Soc. 47: 223-228

    Google Scholar 

  • Dietemann V., Peeters C. and Hölldobler B. 2005. Role of the queen in regulating reproduction in the bulldog ant Myrmecia gulosa: control or signalling? Anim. Behav. 69: 777-784

    Google Scholar 

  • Dietemann V., Peeters C., Liebig J., Thivet V. and Hölldobler B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and non reproductives in the ant Myrmecia gulosa. Proc. Natl Acad. Sci. USA 100: 10341-10346

    Google Scholar 

  • Dijkstra M.B., Nash D.R. and Boomsma J.J. 2005. Self-restraint and sterility in workers of Acromyrmex and Atta leafcutter ants. Insect. Soc. 52: 67-76

  • Dronnet S., Lohou C., Christides J.P. and Bagnères A.G. 2006. Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud J. Chem. Ecol 32: 1027-1042

  • Endler A., Liebig J., Schmitt T., Parker J.E., Jones G.R., Schreier P. and Hölldobler B. 2004. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl Acad. Sci. USA 101: 2945-2950

    Google Scholar 

  • Errard C., Hefetz A. and Jaisson P. 2006. Social discrimination tuning in ants: template formation and chemical similarity. Behav. Ecol. Sociobiol. 59: 353-363

    Google Scholar 

  • Fan Y., Richard F.-J., Nabila R. and Grozinger C.M. 2010. Effects of queen mandibular pheromone on nestmate recognition in worker honeybees, Apis mellifera. Anim. Behav. 79: 649-656

    Google Scholar 

  • Fan Y., Zurek L., Dykstra M.J. and Schal C. 2003. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German Cockroach, Blatella germanica. Naturwissenschaften 90: 121-126

    Google Scholar 

  • Ferveur J.F., Savarit F., O’Kane C.J., Sureau G., Greenspan R.J. and Jallon J.M. 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276: 1555-1558

    Google Scholar 

  • Fierro M.M., Cruz-Lopez L., Sanchez D. and Villanueva-Gutiérrez R. 2011. Queen volatile as a modulator of Tetragonisca angustula. J. Chem. Ecol. 37: 1255-1262

    Google Scholar 

  • Fletcher D.J.C. and Blum M.S. 1981. Pheromonal control of dealation and oogenesis in virgin queen fire ants. Science 212: 73-75

    Google Scholar 

  • Fletcher D.J.C. and Ross K.G. 1985. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30: 319-343

    Google Scholar 

  • Foitzik S., Sturm H., Pusch K., D’Ettorre P. and Heinze J. 2007. Nestmate recognition and intraspecific chemical and genetic variation in Temnothorax ants. Anim. Behav. 73: 999-1007

    Google Scholar 

  • Gamboa G., Reeve H.K., Ferguson I.D. and Wacker T.L. 1986. Nestmate recognition in social wasps: the origin and acquisition of recognition odours. Anim. Behav. 34: 685-695

    Google Scholar 

  • Gamboa G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fenn. 41: 789-808

    Google Scholar 

  • Gamboa G.J., Grudzien T.A., Espelie K.E. and Bura E.A. 1996. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Anim. Behav. 51: 625-629

    Google Scholar 

  • Getz W.M. and Smith K. 1986. Honey bee kin recognition: learning self and nestmate phenotypes. Anim. Behav. 34: 1617-1626

    Google Scholar 

  • Gibbs A.G. 1995. Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp. Biochem. Physiol. 112B: 667-672

    Google Scholar 

  • Gibbs A.G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38: 471-482

    Google Scholar 

  • Giraud T., Pedersen J.S. and Keller L. 2002. Evolution of supercolonies: the Argentine ants of southern Europe. Proc. Natl Acad. Sci. USA

  • Glancey B.M., Rocca J.R., Lofgren C.S. and Tumlinson J.H. 1984. Field tests with synthetic components of the queen recognition pheromone of the red imported fire ant, Solenopsis invicta. Sociobiology 9: 19

    Google Scholar 

  • Greene M.J. and Gordon D.M. 2003. Cuticular hydrocarbons inform task decisions. Nature 423: 32

    Google Scholar 

  • Greene M.J. and Gordon D.M. 2007. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210: 897-905

  • Guerrieri F.J., Nehring V., Jorgensen C.G., Nielsen J., Giovanni Galizia C. and D’Ettorre P. 2009. Ants recognize foes and not friends. Proc. R. Soc. Lond. B 276: 2461-2468

    Google Scholar 

  • Hadley N.F. and Schultz T.D. 1987. Water-loss in three species of tiger beetles (Cicindela) - correlations with epicuticular hydrocarbons. J. Insect Physiol. 33: 677-682

    Google Scholar 

  • Hannonen M., Sledge M.F., Turillazzi S. and Sundström L. 2002. Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim. Behav. 64: 477-485

    Google Scholar 

  • Hanus R., Vrkoslav V., Hrdy I., Cvacka J. and Sobotnik J. 2010. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. Lond. B 277: 995-1002

    Google Scholar 

  • Hefetz A., Soroker V., Dahbi A., Malherbe M.C. and Fresneau D. 2001. The front basitarsal brush in Pachycondyla apicalis and its role in hydrocarbon circulation. Chemoecology 11: 17-24

    Google Scholar 

  • Heinze J. 1996. Reproductive hierarchies among workers of the slave-making ant, Chalepoxenus muellerianus. Ethology 102: 117-127

    Google Scholar 

  • Heinze J. 2004. Reproductive conflict in insect societies. Adv. Stud. Behav. 34: 1-57

    Google Scholar 

  • Heinze J., Foitzik S., Hippert A. and Hölldobler B. 1996. Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102: 510-522

    Google Scholar 

  • Helanterä H., Strassmann J.E., Carrillo J. and Queller D.C. 2009. Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol. Evol. 24: 341-349

    Google Scholar 

  • Hines H., Hunt J., O’Conner T., Gillespie J. and Cameron S. 2007. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Natl Acad. Sci. USA 104: 3295-3299

    Google Scholar 

  • Hölldobler B. 1999. Multimodal signals in ant communication. J. Comp. Physiol. A 184: 129-141

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge, Mass

  • Holman L., Jorgensen C.G., Nielsen J. and d’Ettorre P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. Lond. B 277: 3793-3800

    Google Scholar 

  • Holman L., Leroy C., Jorgensen C., Nielsen J. and d’Ettorre P. 2013. Are queen ants inhibited by their own pheromone? Regulation of productivity via negative feedback. Behav. Ecol. 24: 380-385

    Google Scholar 

  • Holzer B., Chapuisat M., Kremer N., Finet C. and Keller L. 2006. Unicoloniality, recognition and genetic differentiation in a native Formica ant. J. Evol. Biol. 19: 2031-2039

    Google Scholar 

  • Hoover S.E.R., Keeling C.I., Winston M.L. and Slessor K.N. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90: 477-480

    Google Scholar 

  • Howard R.W. and Blomquist G.J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50: 371-393

    Google Scholar 

  • Hunt J.H. 2007. The Evolution of Social Wasps. Oxford University Press

  • Hunt J.H. 2012. A conceptual model for the origin of worker behaviour and adaptation of eusociality. J. Evol. Biol. 25: 1-19

    Google Scholar 

  • Hunt J.H. and Richard F.-J. Intracolony vibroacoustic communication in social insects. Insect. Soc. (in press)

  • Isingrini M., Lenoir A. and Jaisson P. 1985. Preimaginal learning as a basis of colony-brood recognition in the ant Cataglyphis cursor. Proc. Natl Acad. Sci. U.S.A. 82: 8545-8547

  • Jaisson P. 1987. The construction of fellowship between nestmates in social Hymenoptera. Exp. Suppl. 54: 313-331

    Google Scholar 

  • Jutsum A.R., Saunders T.S. and Cherrett J.M. 1979. Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Anim. Behav. 27: 839-844

    Google Scholar 

  • Kaib M., Jmhasly P., Wilfert L., Durka W., Franke S., Franke W., Leuthold R.H. and Brandl R. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385

    Google Scholar 

  • Kather R., Drijfhout F. and Martin S. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37: 205-212

    Google Scholar 

  • Katzav-Gozansky T., Boulay R., Soroker V. and Hefetz A. 2006. Queen pheromones affecting the production of queen-like secretion in workers. J. Comp. Physiol. A 192: 737-742

    Google Scholar 

  • Katzav-Gozansky T., Soroker V. and Hefetz A. 1997. Plasticity of caste-specific Dufour’s gland secretion in the honey bee (Apis mellifera L.). Naturwissenschaften 84: 238-241

    Google Scholar 

  • Keeling C., Slessor K.N., Higo H.A. and Winston M.L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl Acad. Sci. USA 100: 4486-4491

    Google Scholar 

  • Keller L. and Passera L. 1989. Influence of the number of queens on nestmate recognition and attractiveness of queens to workers in the Argentine ant, Iridomyrmex humilis (Mayr). Anim. Behav. 37: 733-740

    Google Scholar 

  • Kirchner W.H. and Arnold G. 2001. Intracolonial kin discrimination in honeybees: do bees dance with their supersisters? Anim. Behav. 61: 597-600

    Google Scholar 

  • Kocher S., Richard F.-J., Tarpy D. and Grozinger C.M. 2009. Queen reproductive state modulates pheromone production and queen-worker interactions in honey bees. Behav. Ecol. 20: 1007-1014

    Google Scholar 

  • Kocher S., Richard F.-J., Tarpy D.R. and Grozinger C.M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9: 232

    Google Scholar 

  • Kocher S.D. and Grozinger C.M. 2011. Cooperation, conflict and the evolution of queen pheromones. J. Chem. Ecol. 37: 1263-1275

    Google Scholar 

  • Lahav S., Soroker V., Hefetz A. and Vander Meer R.K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86: 246-249

  • Lahav S., Soroker V., Vander Meer R.K. and Hefetz A. 1998. Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav. Ecol. Sociobiol. 43: 203-212

    Google Scholar 

  • Le Conte Y. and Hefetz A. 2008. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53: 523-542

    Google Scholar 

  • Lengyel F., Westerlund S.A. and Kaib M. 2007. Juvenile Hormone III influences task-specific cuticular hydrocarbon profile changes in the ant Myrmicaria eumenoides. J. Chem. Ecol. 33: 167-181

    Google Scholar 

  • Lenoir A., Fresneau D., Errard C. and Hefetz A. 1999. The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Information Processing in Social Insects (Detrain C., Deneubourg J.L. and Pasteels J., Eds). Birkhäuser, Basel, pp 219-237

  • Lenoir A., Hefetz A., Simon T. and Soroker V. 2001. Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol. Entomol. 26: 275-283

    Google Scholar 

  • Liang D., Blomquist G.J. and Silverman J. 2001. Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp. Biochem. Physiol. 129: 871-882

    Google Scholar 

  • Liang D. and Silverman J. 2000. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87: 412-416

    Google Scholar 

  • Liebig J. 2010. Hydrocarbon profiles indicate fertility and dominance status in ant, bee and wasp colonies. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 254-281

  • Liebig J., Eliyahu D. and Brent C.S. 2009. Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 63: 1799-1807

    Google Scholar 

  • Liebig J., Peeters C., Oldham N.J., Markstädter C. and Hölldobler B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl Acad. Sci. USA 97: 4124-4131

    Google Scholar 

  • Lin Y.K., Chang H.Y., Wu W.J., Ho H.Y. and Lin C.C. 2010. Different cuticular chemical profiles between the monogynous and polygynous forms of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae) in Taiwan. Sociobiology 56: 39-55

    Google Scholar 

  • Lommelen E., Johnson C.A., Drijfhout F.P., Billen J., Wenseleers T. and Gobin B. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32: 2023-2034

    Google Scholar 

  • Lorenzi M.C., Bagneres A.G., Clément J.L. and Turillazzi S. 1997. Polistes biglumis bimaculatus epiculticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insect. Soc. 44: 123-138

    Google Scholar 

  • Lucas C., Pho D.B., Fresneau D. and Jallon J.-M. 2004. Hydrocarbon circulation and colonial signature in Pachycondyla villosa. J. Insect Physiol. 50: 595-607

    Google Scholar 

  • Maisonnasse A., Alaux C., Beslay D., Crauser D., GInes C., Plettner E. and Le Conte Y. 2010. New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation? Front Zool. 7: 18

  • Martin G.F. and Ramalho-Ortigao J.M. 2012. Oenocytes in insects. Invertebr. Survival J. 9: 139-152

    Google Scholar 

  • Martin S.J. and Drijfhout F. 2009a. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35: 1151-1161

  • Martin S.J. and Drijfhout F. 2009b. Nest-mate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J. Chem. Ecol. 35: 368-374

  • Martin S.J., Vitikainen E., Helanterä H. and Drijfhout F.P. 2008. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. Lond. B 275: 1271-1278

    Google Scholar 

  • Matsuura K. 2001. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92: 20-26

    Google Scholar 

  • Matsuura K. 2012. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J. Chem. Ecol. 38: 746-754

    Google Scholar 

  • Matsuura K., Himuro C., Yokoi T., Yamamoto Y., Vargo E.L. and Keller L. 2010. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad Sci. USA 107: 12963-12968

    Google Scholar 

  • Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362-364

    Google Scholar 

  • Melathopoulos A.P., Winston M., Pettis J.S. and Pankiw T. 1996. Effect of queen mandibular pheromone on initiation and maintenance of queen cells in the honey bee (Apis mellifera L.). Can. Entomol. 128: 263-272

    Google Scholar 

  • Meskali M., Bonavita-Cougourdan A., Provost E., Bagnères A.G., Dusticier G. and Clément J.L. 1995. Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (Scop.) (Hymenoptera: Formicidae): role of postpharyngeal glands. J. Chem. Ecol. 21: 1127-1148

    Google Scholar 

  • Millar J.G. 2010. Chemical synthesis of insect cuticular hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 163-186

  • Mitra A. and Gadagkar R. 2011a. Can Dufour’s gland compounds honestly signal fertility in the primitively eusocial wasp Ropalidia marginata? Naturwissenschaften 98: 157-161

  • Mitra A. and Gadagkar R. 2012. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insect. Soc. 59: 251-255

    Google Scholar 

  • Mitra A., Saha P., Chaoulideer M.E., Bhadra A. and Gadagkar R. 2011b. Chemical communication in Ropalidia marginata: Dufour’s gland contains queen signal that is perceived across colonies and does not contain colonial signal. J. Insect Physiol. 57: 280-284

  • Monnin T. 2006. Chemical recognition of reproductive status in social insects. Ann. Zool. Fennici 43: 515-530

    Google Scholar 

  • Monnin T., Malosse C. and Peeters C. 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J. Chem. Ecol. 24: 473-490

    Google Scholar 

  • Monnin T., Ratnieks F.L.W., Jones G.R. and Beard R. 2002. Pretender punishment induced by chemical signalling in a queenless ant. Nature 419: 61-65

    Google Scholar 

  • Moore D. and Liebig J. 2010. Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. Behav. Ecol. Sociobiol. 64: 1011-1018

    Google Scholar 

  • Moreira D.D.O., Erthal J.M., Carrera M.P., Silva C.P. and Samuels R.I. 2006. Oral trophallaxis in adult leaf-cutting ants Acromyrmex subterraneus subterraneus (Hymenoptera, Formicidae). Insect. Soc. 53: 345-348

    Google Scholar 

  • Mori K. 2007. The significance of chirality in pheromone science. Biorg. Med. Chem. 15: 7505-7523

    Google Scholar 

  • Nehring V., Evison S.E.F., Santorelli L.A., D’Ettorre P. and Hughes W.O.H. 2011. Kin-informative recognition cues in ants. Proc. R. Soc. Lond. B 278: 1942-1948

    Google Scholar 

  • Nielsen J., Boomsma J.J., Oldham N.J., Petersen H.C. and Morgan E.D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insect. Soc. 46: 58-65

    Google Scholar 

  • Nowak M.A., Tarnita C.E. and Wilson E.O. 2010. The evolution of eusociality. Nature 466: 1057-1062

    Google Scholar 

  • Nunes T.M., Turatti I.C., Lopes N.P. and Zucchi R. 2009. Chemical signals in the stingless bee, Frieseomelitta varia, indicate caste, gender, age and reproductive status. J. Chem. Ecol. 35: 1172-1180

    Google Scholar 

  • Obin M.S. 1986. Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): effect of environment and the role of cuticular hydrocarbons. J. Chem. Ecol. 12: 1965-1975

    Google Scholar 

  • Obin M.S. and Vander Meer R.K. 1988. Sources of nestmate recognition cues in the imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Anim. Behav. 36: 1361-1370

    Google Scholar 

  • Ozaki M. and Wada-Katsumata A. 2010. Perception and olfaction of cuticular compounds. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, pp 207-221

  • Panek L.M. and Gamboa G.J. 2000. Queens of the paper wasp Polistes fuscatus (Hymenoptera: Vespidae) discriminate among larvae on the basis of relatedness. Ethology 106: 159-170

    Google Scholar 

  • Pankiw T., Huang Z.Y., Winston M.L. and Robinson G.E. 1998. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44: 685-692

    Google Scholar 

  • Peeters C. and Liebig J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Organization of Insect Societies: From Genome to Socio-complexity (Gadau J. and Fewell J., Eds). Harvard University Press, Cambridge, pp 220-242

  • Peeters C., Monnin T. and Malosse C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. Lond. B 266: 1323-1327

    Google Scholar 

  • Pettis J.S., Winston M. and Collins A.M. 1995. Suppression of queen rearing in European and Africanized honey bees Apis melifera L. by synthetic queen mandibular gland pheromone. Insect. Soc. 42: 113-121

    Google Scholar 

  • Pfennig D.W., Reeve H.K. and Shellman J.S. 1983. Learned component of nestmate discrimination in workers of a social wasp, Polistes fuscatus (Hymenoptera: Vespidae). Anim. Behav. 31: 412-416

    Google Scholar 

  • Plettner E., Otis G.W., Wimalaratne P.D.C., Winston M.L., Slessor K.N., Pankiw T. and Punchihewa P.W.K. 1997. Species- and caste-determined mandibular gland signals in honeybees (Apis). J. Chem. Ecol. 23: 363-377

    Google Scholar 

  • Provost E. 1987. Role of the queen in the intra-colonial aggressivity and nestmate recognition in Leptothorax lichtensteini ants. In: Chemistry and Biology of Social Insects (Proc. 10 th Int. Congr. IUSSI, Munich, 1986) (Eder J. and Rembold H., Eds). Verlag J. Peperny, Munich, pp 479

  • Richard F.-J., Holly H. and Grozinger C.M. 2012. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 13: 558

    Google Scholar 

  • Richard F.-J., Schal C., Tarpy D. and Grozinger C.M. 2011. Effects of instrumental insemination and insemination quantity on Dufour’s gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera). J. Chem. Ecol. 37: 1027-1036

    Google Scholar 

  • Richard F.-J., Aubert A. and Grozinger C.M. 2008. Modulation of social interactions by immune stimulation in honey bee workers, Apis mellifera. BMC Biology 6: 50

    Google Scholar 

  • Richard F.-J. and Errard C. 2009. Trophallaxis and hygienic behavior in leaf-cutting ants (Acromyrmex). J. Insect Science 9: 63

    Google Scholar 

  • Richard F.-J., Hefetz A., Christides J.P. and Errard C. 2004. Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus. Chemoecology 14: 9-16

    Google Scholar 

  • Richard F.-J., Poulsen M., Hefetz A., Errard C., Nash D.R. and Boomsma J.J. 2007a. The origin of chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 61: 1637-1649

  • Richard F.-J., Poulsen M., Drijfhout F., Jones G.R. and Boomsma J.J. 2007b. Specificity in chemical profiles of workers, brood and mutualistic fungi in Atta, Acromyrmex, and Sericomyrmex fungus-growing ants. J. Chem. Ecol. 33: 2281-2292

  • Richard F.-J., Tarpy D.R. and Grozinger C.M. 2007c. Effects of insemination quantity on honey bee queen physiology. PloS ONE 2: e980

  • Rocca J.R., Tumlinson J.H., Glancey B.M. and Lofgren C.S. 1983. The queen recognition pheromone of Solenopsis invicta, preparation of (E)-6-(1-penenyl)-2H-pyran-2-one. Tetrahedron Lett. 24: 1889-1892

    Google Scholar 

  • Ross K.G. 2001. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10: 265-284

    Google Scholar 

  • Rosset H., Schwander T. and Chapuisat M. 2007. Nestmate recognition and levels of aggression are not altered by changes in genetic diversity in a socially polymorphic ant. Anim. Behav. 74: 951-956

    Google Scholar 

  • Ruther J., Sieben S. and Schricker B. 1998. Role of cuticular lipids in nestmate recognition of the European hornet Vespa crabro L. (Hymenoptera, Vespidae). Insect. Soc. 45: 169-179

    Google Scholar 

  • Schal C., Sevala V.L., Capurro M.D.L., Snyder T.E., Blomquist G.J. and Bagnères A.G. 2001. Tissue distribution and lipophorin transport of hydrocarbons and sex pheromones in the house fly Musca domestica. J. Insect Science 1: 1-11

    Google Scholar 

  • Schmitt T., Herzner G., Weckerle B., Schreier P. and Strohm E. 2007. Volatiles of foraging honeybees Apis mellifera (Hymenoptera: Apidae) and their potential role as semiochemicals. Apidologie 38: 164-170

    Google Scholar 

  • Scholl J. and Naug D. 2011. Olfactory discrimination of age-specific hydrocarbons generates behavioral segregation in a honeybee colony. Behav. Ecol. Sociobiol. 65: 1967-1973

    Google Scholar 

  • Seeley T. 1985. Honeybee Ecology: A Study of Adaptation in Social Life. Princeton University Press, Princeton, New Jersey

  • Sevala V.L., Bagnères A.G., Kuenzli M., Blomquist G.J. and Schal C. 2000. Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J. Chem. Ecol. 26: 765-789

    Google Scholar 

  • Sherman P.W., Reeve H.K. and Pfennig D.W. 1997. Recognition systems. In: Behavioural Ecology (Krebs J.R. and Davies N.B., Eds). Oxford: Blackwell Science, pp 69-96

  • Silverman J. and Liang D. 2001. Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenschaften 88: 73-77

    Google Scholar 

  • Singer T.L. and Espelie K.E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition. Anim. Behav. 44: 63-68

    Google Scholar 

  • Singer T.L. and Espelie K.E. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera, Vespidae). J. Insect Behav. 9: 857-870

    Google Scholar 

  • Sledge M.F., Dani F.R., Cervo R., Dapporto L. and Turillazzi S. 2001. Recognition of social parasites as nestmates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer. Proc. R. Soc. Lond. B 268: 2253-2260

    Google Scholar 

  • Slessor K.N., Kaminski L.A., King G.G.S., Borden J.H. and Winston M.L. 1988. The semiochemical basis of the retinue response to queen honey bees. Nature 332: 354-356

    Google Scholar 

  • Slessor K.N., Kaminski L.A., King G.G.S. and Winston M.L. 1990. Semiochemicals of the honeybee queen mandibular glands. J. Chem. Ecol. 16: 851-860

    Google Scholar 

  • Slessor K.N., Winston M. and Le Conte Y. 2005. Pheromone communication in the honey bee (Apis mellifera L.). J. Chem. Ecol. 31: 2731-2745

  • Smith A.A., Hölldobler B. and Liebig J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19: 78-81

    Google Scholar 

  • Soroker V., Fresneau D. and Hefetz A. 1998. Formation of colony odor in the ponerine ant Pachycondyla apicalis. J. Chem. Ecol. 24: 1077-1090

    Google Scholar 

  • Soroker V. and Hefetz A. 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J. Insect Physiol. 46: 1097-1102

    Google Scholar 

  • Soroker V., Lucas C., Simon T., Hefetz A., Fresneau D. and Durand J.L. 2003. Hydrocarbon distribution and colony odour homogenisation in Pachycondyla apicalis. Insect. Soc. 50: 212-217

    Google Scholar 

  • Sorvari J., Theodora P., Turillazzi S., Hakkarainen H. and Sundström L. 2008. Food resources, chemical signaling and nestmate recognition in the ant Formica aquilonia. Behav. Ecol. 19: 441-447

    Google Scholar 

  • Suarez A.V., Holway D.A., Liang D.S., Tsutsui N.D. and Case T.J. 2002. Spatiotemporal patterns of intraspecific aggression in the invasive Argentine ant. Anim. Behav. 64: 697-708

    Google Scholar 

  • Suàrez M.E. and Thorne B.L. 2000. Rate, amount, and distribution pattern of alimentary fluid transfer via trophallaxis in three species of termites (Isoptera: Rhinotermitidae, Termopsidae). Ann. Entomol. Soc. Am. 93: 145-155

    Google Scholar 

  • Sundström L. 1997. Queen acceptance and nestmate recognition in monogyne and polygyne colonies of the ant Formica truncorum. Anim. Behav. 53: 499-510

    Google Scholar 

  • Symonds M.R.E. and Elgar M.A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23: 220-228

    Google Scholar 

  • Tannure-Nascimento I.C., Nascimento F.S., Turatti I.C., Lopes N.P., Trigo J.R. and Zucchi R. 2007. Colony membership is reflected by variations in cuticular hydrocarbon profile in a Neotropical paper wasp, Polistes satan (Hymenoptera, Vespidae). Genet. Mol. Res. 6: 390-396

    Google Scholar 

  • Tentschert J., Bestmann H.J. and Heinze J. 2002. Cuticular compounds of workers and queens in two Leptothorax ant species - a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology 12: 15-21

    Google Scholar 

  • Tissot M., Nelson D.R. and Gordon D.M. 2001. Qualitative and quantitative differences in cuticular hydrocarbons between laboratory and field colonies of Pogonomyrmex barbatus. Comp. Biochem. Physiol. 130: 349-358

    Google Scholar 

  • Torres C., Brandt M. and Tsutsui N. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect. Soc. 54: 363-373

    Google Scholar 

  • Tsutsui N.D., Suarez A.V. and Grosberg R.K. 2003. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc. Natl. Acad. Sci. USA 100: 1078-83

    Google Scholar 

  • Tsutsui N.D., Suarez A.V., Holway D.A. and Case T.J. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97: 5948-53

    Google Scholar 

  • Turillazzi S., Sledge M.F., Dapporto L., Landi M., Fanelli D., Fondelli L., Zanetti P. and Dani F.R. 2004. Epicuticular lipids and fertility in primitively social wasps (Hymenoptera Stenogastrinae). Physiol. Entomol. 29: 464-471

    Google Scholar 

  • Van der Horst D.J. 1990. Lipid transport function of lipoproteins in flying insects. Bioch. Bioph. Acta 1047: 195-211

    Google Scholar 

  • van Wilgenburg E., Sulc R., Shea K.J. and Tsutsui N.D. 2010. Deciphering the chemical basis of nestmate recognition. J. Chem. Ecol. 36: 751-758

    Google Scholar 

  • van Wilgenburg E., Symonds M.R.E. and Elgar M.A. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol. 24: 1188-1198

    Google Scholar 

  • Van Zweden J.S., Dreier S. and d’Ettorre P. 2009. Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. J. Insect Physiol. 55: 158-163

    Google Scholar 

  • Van Zweden J.S., Vitikainen E., D’Ettorre P. and Sundström L. 2011. Do cuticular hydrocarbons provide sufficient information for optimal sex allocation in the ant Formica exsecta? J. Chem. Ecol. 37: 1365-1373

    Google Scholar 

  • Vander Meer R.K. and Alonso L.E. 2002. Queen primer pheromone affects conspecific fire ant (Solenopsis invicta) aggression. Behav. Ecol. Sociobiol. 51: 122-130

    Google Scholar 

  • Vander Meer R.K., Glancey B.M., Lofgren C.S., Glover A., Tumlinson J.H. and Rocca J. 1980. The poison sac of red imported fire ant queens: source of a pheromone attractant. Ann. Entomol. Soc. Am. 73: 609-612

    Google Scholar 

  • Vander Meer R.K. and Morel L. 1998. Nestmate recognition in ants. In: Pheromone Communication in Social Insects (Vander Meer R.K., Breed M., Espelie K.E. and Winston M., Eds). Westview Press, Boulder, CO, pp 79-103

  • Vander Meer R.K., Preston C.A. and Hefetz A. 2008. Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Naturwissenschaften 95: 1155-1158

    Google Scholar 

  • Vander Meer R.K., Saliwanchik D. and Lavine B. 1989. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: implications for nestmate recognition. J. Chem. Ecol. 15: 2115-2125

    Google Scholar 

  • Vargo E.L. 1998. Primer pheromones in ants. In: Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (Vander Meer R.K., Breed M.D., Winston M. and Espelie K.E., Eds). Westview Press, Boulder, Colorado, pp 293-313

  • Vargo E.L. and Hulsey C.D. 2000. Multiple glandular origins of queen pheromones in the fire ant Solenopsis invicta. J. Insect Physiol. 46: 1151-1159

    Google Scholar 

  • Vasquez G.M., Schal C. and Silverman J. 2009. Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J. Chem. Ecol. 35: 922-932

    Google Scholar 

  • Vauchot B., Provost E., Bagnères A.G., Riviere G., Roux M. and Clément J.L. 1998. Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. J. Insect Physiol. 44: 59-66

    Google Scholar 

  • Wagner D., Brown M.J.F., Broun P., Cuevas W., Moses L.E., Chao D.L. and Gordon D.M. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24: 2021-2037

    Google Scholar 

  • Weil T., Hoffmann K., Kroiss J., Strohm E. and Korb J. 2009. Scent of a queen-cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96: 315-319

    Google Scholar 

  • Winston M.L. 1987. The Biology of the Honey Bee. Cambridge: Harvard University Press

  • Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S. et al. 2010. The genome of the fire ant Solenopsis invicta. Proc. Natl Acad. Sci. USA 108: 5679-5684

    Google Scholar 

  • Yew J.Y., Cody R.B. and Kravitz E.A. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl Acad. Sci. USA 105: 7135-7140

    Google Scholar 

  • Yusuf A.A., Pirk C.W.W., Crewe R.M., Njagi P.G.N., Gordon I. and Torto B. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J. Chem. Ecol. 36: 441-448

    Google Scholar 

  • Zupko K., Sklan D. and Lensky Y. 1993. Proteins of the honeybee (Apis mellifera L.) body surface and exocrine gland secretions. J. Insect Physiol. 39: 41-46

    Google Scholar 

Download references

Acknowledgments

We thank G. Bosquet for the design of figures 1 and 2. We thank Michiel B. Dijkstra for his helpful comments. JHH received travel funding support by the European Commission through the EMMC European Master in Applied Ecology (FPA 2008-0092/001 FRAME MUNDB123)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-J. Richard.

Glossary box

Glossary box

Colony closure: Social insects usually have the ability to distinguish nestmates from non-nestmates, and this can lead to agonistic behaviors directed toward non-nestmates. Non-nestmates can be either allospecific or conspecific. Agonistic behavior directed toward non-nestmates is called colony closure.

Cues and templates: A variety of phenotype components, including cuticular hydrocarbons, behavior, and cell surface proteins can act as cues. By comparing its own cues to a reference set of cues, an individual can define “self” or its individual template. When two individuals encounter one another, they both assess the phenotype cue(s) or label expressed on the other individual and can thereby distinguish nestmates from non-nestmates.

Hydrocarbon: Any of a number of families of compounds, each of which contains only the elements carbon and hydrogen. Cuticular hydrocarbon chemicals (CHCs) are low or non-volatile molecules (mainly those characterized by long chains of >20 carbons) found on insect cuticle that can be divided into ten distinct groups including n-alkanes, branched alkanes, alkenes, and alkynes (Fig. 1). Perception of CHCs is usually possible at short distance without individual contact, but contact with the cuticle of another individual enables perception components with low or no volatility.

Fig. 2
figure 2

Generic head (a) and abdomen (b) of social insect for gland location

Queen pheromone: A queen-produced odor or “specific substance” that can act both as releaser and primer pheromone. The queen pheromone composition and gland production vary between species. For example, honeybees’ queen mandibular pheromone consists of five major compounds: 9-oxo-(E)-2-decenoic acid (ODA); (R)-and (S)-9-hydroxy-(E)-2-decenoic acid (9-HDA); methyl p-hydroxybenzoate (HOB); and 4-hydroxy-3-methoxyphenylethanol (HVA). These compounds act in synergy with an additional four compounds: 8-hydroxyoctanoic acid (8-HOAA); 10-hydroxydecanoic acid (10-HDAA); decanedioic acid (C10:0 DA); and (E)-dec-2-enedioic acid (C10:1 DA). The fire ant Solenopsis invicta queen pheromone is composed of three main compounds: (E)-6(1-pentenyl)-2H-pyran-2-one; tetrahydro-3,5-dimethyl-6-(1-methylbutyl)2H-pyran-2-one and dihydroactinidiolide.

Lipids: Naturally occurring compounds that are soluble in non-polar solvents. Classes of lipids include waxes, triglycerides, steroids, and prostaglandins.

Pheromone: A single compound or blend of compounds emitted by an actor that changes the physiology (primer pheromone) or behavior (releaser pheromone) of a recipient. Pheromones are exclusively involved in intraspecific communication. In social insects, pheromones include chemical compounds such as cuticular hydrocarbons that do not systematically elicit specific behaviors but are involved in discrimination and recognition of conspecifics or kin. The same pheromone may have multiple functions and can act as both a primer and releaser pheromone. In some cases, the same chemicals can act both as a pheromone (intraspecific) and as an allelochemical (interspecific).

Semiochemicals: Chemical compounds that can be distinguished according to the kind of information transmitted and role in chemical perception and communication. Semiochemicals that play roles among individuals of the same species are called pheromones, and those that play roles in between-species interactions are called allelochemicals.

Trophallaxis: The direct transfer of liquid food from mouth to mouth, or in termites also proctodeum to mouth.

Unicolonial: In most ant species, one nest corresponds to one colony. In some ant species the colony contains several interconnected nests in which all individuals are recognized as colony members. Such colonies are called unicolonial. Invasive unicolonial ants are the most extensive cooperative units in animals, with a few species known to be unicolonial across hundreds of kilometers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, FJ., Hunt, J.H. Intracolony chemical communication in social insects. Insect. Soc. 60, 275–291 (2013). https://doi.org/10.1007/s00040-013-0306-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-013-0306-6

Keywords

Navigation