Skip to main content
Log in

Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in H of the cocycle-image of an element of G must have finite integral over its domain (a subset of the G-system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in G. ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov L.M.: The entropy of a derived automorphism. Doklady Akademii Nauk SSSR 128, 647–650 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Adams S.: Trees and amenable equivalence relations. Ergodic Theory Dynamic Systems 10(1), 1–14 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Abramov L.M., Rohlin V.A.: Entropy of a skew product of mappings with invariant measure. Vestnik Leningrad University 17(7), 5–13 (1962)

    MathSciNet  Google Scholar 

  4. Austin T.: Integrable measure equivalence for groups of polynomial growth. Groups, Geometry, and Dynamics 10(1), 117–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass H.: The degree of polynomial growth of finitely generated nilpotent groups. Proceedings of the London Mathematical Society (3) 25, 603–614 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belinskaya R.: Partitions of lebesgue space in trajectories defined by ergodic automorphisms. Functional Analysis and Its Applications 2, 4–16 (1968)

    Google Scholar 

  7. Bader U., Furman A., Sauer R.: Integrable measure equivalence and rigidity of hyperbolic lattices. Invent. Math. 194(2), 313–379 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowen L.: Measure conjugacy invariants for actions of countable sofic groups. Journal of the American Mathematical Society 23(1), 217–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. L.P. Bowen. A measure-conjugacy invariant for free group actions. Annals of Mathematics (2), (2)171 (2010), 1387–1400.

  10. A. Connes, J. Feldman and B. Weiss. An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynamical Systems, (4)1 (1982), 431–450 (1981).

  11. D. Cieslik. The Steiner ratio. In: Combinatorial Optimization, Vol. 10. Kluwer Academic Publishers, Dordrecht (2001).

  12. Danilenko A.I.: Entropy theory from the orbital point of view. Monatshefte für Mathematik 134(2), 121–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. del Junco and D.J. Rudolph. Kakutani equivalence of ergodic \({{\bf Z}^{n}}\) actions. Ergodic Theory Dynamic Systems, (1)4 (1984), 89–104.

  14. Dye H. A.: On groups of measure preserving transformation. I. American Journal of Mathematics 81, 119–159 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dye H.A.: On groups of measure preserving transformations. II. American Journal of Mathematics 85, 551–576 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Fieldsteel and N.A. Friedman. Restricted orbit changes of ergodic \({{\bf Z}^d}\)-actions to achieve mixing and completely positive entropy. Ergodic Theory Dynamic Systems, (4)6 (1986), 505–528.

  17. Furman A.: Orbit equivalence rigidity. Annals of Mathematics (2) 150(3), 1083–1108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Furman. A survey of measured group theory. In: Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics, pp. 296–374. University of Chicago Press, Chicago (2011).

  19. D. Gaboriau. On orbit equivalence of measure preserving actions. In: Rigidity in Dynamics and Geometry (Cambridge, 2000). Springer, Berlin (2002), pp. 167–186.

  20. Gaboriau D.: Examples of groups that are measure equivalent to the free group. Ergodic Theory Dynamics Systems 25(6), 1809–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Gromov. Asymptotic invariants of infinite groups. In: Geometric group theory, Vol. 2 (Sussex, 1991). London Mathematical Society Lecture Note Series, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993).

  22. Guivarc’h Y.: Groupes de Lie à croissance polynomiale. Comptes Rendus de l’Acadmie des Sciences 272, A1695–A1696 (1971)

    MathSciNet  MATH  Google Scholar 

  23. Hasfura-Buenaga J.R.: The equivalence theorem for \({{\bf Z}^d}\)-actions of positive entropy. Ergodic Theory Dynamics Systems 12(4), 725–741 (1992)

    MathSciNet  MATH  Google Scholar 

  24. A.B. Katok. The special representation theorem for multi-dimensional group actions. In: Dynamical systems, Vol. I—Warsaw. Astérisque No. 49. Societe Mathematique de France, Paris (1977), pp. 117–140.

  25. Kerr D., Li H.: Bernoulli actions and infinite entropy. Groups, Geometry, and Dynamics 5(3), 663–672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. A.S. Kechris and B.D. Miller. Topics in orbit equivalence. In: Lecture Notes in Mathematics, Vol. 1852. Springer, Berlin (2004).

  27. Kammeyer J.W., Rudolph D.J.: Restricted orbit equivalence for ergodic \({{\bf Z}^d}\) actions. I. Ergodic Theory Dynamic Systems 17(5), 1083–1129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.W. Kammeyer and D.J. Rudolph. Restricted orbit equivalence for actions of discrete amenable groups. In: Cambridge Tracts in Mathematics, Vol. 146. Cambridge University Press, Cambridge (2002).

  29. Levitt G.: On the cost of generating an equivalence relation. Ergodic Theory Dynamic Systems 15(6), 1173–1181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Mann. How groups grow. In: London Mathematical Society Lecture Note Series, Vol. 395. Cambridge University Press, Cambridge (2012).

  31. D.S. Ornstein, D.J. Rudolph and B. Weiss. Equivalence of measure preserving transformations. Memoirs of the American Mathematical Society, (262)37 (1982), xii+116.

  32. D.J. Rudolph. Restricted orbit equivalence. Memoirs of the American Mathematical Society, (323)54 (1985), v+150.

  33. Rudolph D.J., Weiss B.: Entropy and mixing for amenable group actions (2). Annals of Mathematics 151(3), 1119–1150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Seward. Krieger’s finite generator theorem for actions of countable groups I. (Preprint). arXiv:1405.3604.

  35. B. Seward. Krieger’s finite generator theorem for actions of countable groups II. (Preprint). arXiv:1501.03367.

  36. Shalom Y.: Harmonic analysis, cohomology, and the large-scale geometry of amenable groups. Acta Mathematics 192(2), 119–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolf J.A.: Growth of finitely generated solvable groups and curvature of Riemanniann manifolds. Journal of Differential Geometry 2, 421–446 (1968)

    MathSciNet  MATH  Google Scholar 

  38. T. Ward and Q. Zhang. The Abramov–Rokhlin entropy addition formula for amenable group actions. Monatshefte für Mathematik, (3–4)114 (1992), 317–329.

  39. R.J. Zimmer. Ergodic theory and semisimple groups. In: Monographs in Mathematics, Vol. 81. Birkhäuser Verlag, Basel (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Austin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, T. Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence. Geom. Funct. Anal. 26, 1483–1525 (2016). https://doi.org/10.1007/s00039-016-0392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0392-5

Navigation