Skip to main content
Log in

Maximizers for the Stein–Tomas Inequality

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We give a necessary and sufficient condition for the precompactness of all optimizing sequences for the Stein–Tomas inequality. In particular, if a well-known conjecture about the optimal constant in the Strichartz inequality is true, we obtain the existence of an optimizer in the Stein–Tomas inequality. Our result is valid in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Alazard, N. Burq, and C. Zuily. A stationary phase type estimate. Proceedings of the American Mathematical Society, to appear. arXiv preprint arXiv:1511.01439 (2015).

  2. Allaire G.: Homogenization and two-scale convergence. SIAM Journal on Mathematical Analysis 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. Journal de Mathématiques Pures et Appliquées 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  4. P. Bégout and A. Vargas. Mass concentration phenomena for the L 2-critical nonlinear Schrödinger equation. Transactions of the American Mathematical Society, 359 (2007), 5257–5282.

  5. Bennett J., Bez N., Carbery A., Hundertmark D.: Heat-flow monotonicity of Strichartz norms. Analysis and PDE 2, 147–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. International Mathematics Research Notices, (1998), 253–283.

  7. Brézis H., Lieb E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis H., Lieb E.H.: Minimum action solutions of some vector field equations. Communications in Mathematical Physics 96, 97–113 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Communications on Pure and Applied Mathematics 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Carles and S. Keraani. On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The L 2-critical case. Transactions of the American Mathematical Society, 359 (2007), 33–62 (electronic).

  11. E. Carneiro, D. Foschi, D. Oliveira e Silva, and C. Thiele. A sharp trilinear inequality related to Fourier restriction on the circle, arXiv preprint arXiv:1509.06674 (2015).

  12. Christ M., Shao S.: Existence of extremals for a Fourier restriction inequality. Analysis and PDE 5, 261–312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christ M., Shao S.: On the extremizers of an adjoint Fourier restriction inequality. Advances in Mathematics 230, 957–977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foschi D.: Maximizers for the Strichartz inequality. Journal of the European Mathematical Society (JEMS) 9, 739–774 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foschi D.: Global maximizers for the sphere adjoint Fourier restriction inequality. Journal of Functional Analysis 268, 690–702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank R.L., Lieb E.H.: Sharp constants in several inequalities on the Heisenberg group. Annals of Mathematics 176(2), 349–381 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Frank R.L., Lieb E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM Journal on Mathematical Analysis 47, 4436–4450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Fröhlich, E.H. Lieb, and M. Loss. Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Communications in Mathematical Physics, 104 (1986), 251–270.

  19. Gérard P.: Description du défaut de compacité de linjection de Sobolev. ESAIM: Control, Optimisation and Calculus of Variations 3, 213–233 (1998)

    Article  MathSciNet  Google Scholar 

  20. P. Gérard, Y. Meyer, and F. Oru. Inégalités de Sobolev précisées, Séminaire É.D.P., (1996–1997), Exp. No. IV, 11 pp.

  21. D. Hundertmark and V. Zharnitsky. On sharp Strichartz inequalities in low dimensions. International Mathematics Research Notices, (2006), 18, Art. ID 34080.

  22. Killip R., Visan M.: Nonlinear Schrödinger equations at critical regularity. In: Evolution Equations, vol. 17 of Clay Math. Proc. Amer. Math. Soc. Providence, RI (2013), pp. 325–437.

  23. Kunze M.: On the existence of a maximizer for the Strichartz inequality. Communications in Mathematical Physics 243, 137–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lieb E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Annals of Mathematics 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Merle and L. Vega. Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. International Mathematics Research Notices, (1998), 399–425.

  26. Moyua A., Vargas A., Vega L.: Restriction theorems and maximal operators related to oscillatory integrals in \({\mathbb{R}^3}\). Duke Mathematical Journal 96, 547–574 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Oliveira e Silva. Extremizers for Fourier restriction inequalities: convex arcs. Journal d’Analyse Mathématique, 124 (2014), 337–385.

  28. S. Shao. Maximizers for the Strichartz inequalities and the Sobolev-Strichartz inequalities for the Schrödinger equation. Electronic Journal of Differential Equations, (2009), 1–13.

  29. S. Shao. On existence of extremizers for the Tomas–Stein inequality for \({\mathbb{S}^1}\). Journal of Functional Analysis, (2015). To appear.

  30. E.M. Stein. Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud. Princeton Univ. Press, Princeton, NJ (1986), pp. 307–355.

  31. E.M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

  32. Strichartz R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Mathematical Journal 44, 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tao T.: A sharp bilinear restriction estimate for paraboloids. Geometric and Functional Analysis 13, 1359–1384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao T.: A pseudoconformal compactification of the nonlinear Schrödinger equation and applications. New York Journal of Mathematics 15, 265–282 (2009)

    MathSciNet  MATH  Google Scholar 

  35. T. Tao, A. Vargas, and L. Vega. A bilinear approach to the restriction and Kakeya conjectures. Journal of the American Mathematical Society, 11 (1998), 967–1000.

  36. Tomas P.A.: A restriction theorem for the Fourier transform. Bulletin of the American Mathematical Society 81, 477–478 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, R.L., Lieb, E.H. & Sabin, J. Maximizers for the Stein–Tomas Inequality. Geom. Funct. Anal. 26, 1095–1134 (2016). https://doi.org/10.1007/s00039-016-0380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0380-9

Navigation