Skip to main content
Log in

Rank-one quantum games

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

In this work, we study rank-one quantum games. In particular, we focus on the study of the computability of the entangled value ω*. We show that the value ω* can be efficiently approximated up to a multiplicative factor of 4. We also study the behavior of ω* under the parallel repetition of rank-one quantum games, showing that it does not verify a perfect parallel repetition theorem. To obtain these results, we first connect rank-one games with the mathematical theory of operator spaces. We also reprove with these new tools essentially known results about the entangled value of rank-one games with one-way communication ω qow . In particular, we show that ω qow can be computed efficiently and it satisfies a perfect parallel repetition theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora S., Lund C., Motwani R., Sudan M., Szegedy M. (1998) Proof verification and the hardness of approximation problems. Journal of the ACM 45(3): 501–555

    Article  MATH  MathSciNet  Google Scholar 

  • Arora S., Safra S. (1998) Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1): 70–122

    Article  MATH  MathSciNet  Google Scholar 

  • M. Ben-Or, M. Hassidim & H. Pilpel (2008). Quantum Multiprover Interactive Proofs with Communicating Provers. In Proceedings of 49th IEEE Symposium on Foundations of Computer Science, 467–476.

  • H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky & C. Schaffner (2011). Position-Based Quantum Cryptography: Impossibility and Constructions. In Advances in Cryptology - CRYPTO 2011: 31st Annual Cryptology Conference, Proceedings, number 6841 in Lecture Notes in Computer Science, 429–446.

  • Chan J. T. (1994) Facial Structure of the Trace Class. Arch. Math.64(3): 185–187

    Article  Google Scholar 

  • R. Cleve, W. Slofstra, F. Unger & S. Upadhyay (2007). Strong parallel repetition theorem for quantum XOR proof systems. In Proceedings of 22nd IEEE Conference on Computational Complexity, 501–555.

  • Devetak I., Junge M., King C., Ruskai M.B. (2006) Multiplicativity of completely bounded p-norms implies a new additivity result. Comm. Math. Phys.266(1): 37–63

    Article  MATH  MathSciNet  Google Scholar 

  • E. Effros & Z.-J. Ruan (2000). Operator Spaces, volume 23 of London Mathematical Society Monographs New Series. Oxford University Press, Oxford.

  • U. Feige (1991). On the success probability of two provers in one-round proof systems. In Proceedings of 6th IEEE Structure in Complexity Theory, 116–123.

  • M. Grötschel, L. Lovasz & A. Schrijver (1993). Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin.

  • G. Gutoski (2010). Quantum Strategies and Local Operations. Technical report arXiv:1003.0038.

  • Haagerup U., Musat M. (2007) On the best constants in noncommutative Khintchine-type inequalities. J. Funct. Anal.250(2): 588–624

    Article  MATH  MathSciNet  Google Scholar 

  • Haagerup U., Musat M. (2008) The Effros-Ruan conjecture for bilinear forms on C*-algebras. Invent. Math.174: 139–163

    Article  MATH  MathSciNet  Google Scholar 

  • T. Ito, H. Kobayashi & K. Matsumoto (2009). Oracularization and two-prover one-round interactive proofs against nonlocal strategies. In Proceedings of 24th Annual IEEE Conference on Computational Complexity, 217–228.

  • N. Johnston, D. W. Kribs & V. I. Paulsen (2009). Computing Stabilized Norms for Quantum Operations via the Theory of Completely Bounded Maps. Quantum Inf. Comput. 9 (1-2), 16–35.

  • Johnston N., Kribs D.W., Paulsen V.I., Pereira R. (2011) Minimal and Maximal Operator Spaces and Operator Systems in Entanglement Theory. J. Funct. Anal.260: 2407–2423

    Article  MATH  MathSciNet  Google Scholar 

  • Junge M. (2005) Embedding of the operator space OH and the logarithmic “little Grothendieck inequality”. Invent. Math. 161 (2): 225–286

    Article  MATH  MathSciNet  Google Scholar 

  • M. Junge, M. Navascues, C. Palazuelos, D. Pérez-García, V. B. Scholz & R. F. Werner (2011). Connes’ embedding problem and Tsirelson’s problem. J. Math. Phy. 52, 012 102.

  • Junge M., Palazuelos C. (2011) Large violation of Bell inequalities with low entanglement. Comm. Math. Phys. 306(3): 695–746

    Article  MATH  MathSciNet  Google Scholar 

  • M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva & M.M. Wolf (2010). Operator Space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104, 170 405.

  • Junge M., Xu Q. (2010) Representation of certain homogeneous Hilbertian operator spaces and applications. Invent. Math. 179(1): 75–118

    Article  MATH  MathSciNet  Google Scholar 

  • J. Kempe, H. Kobayashi, K. Matsumoto, B. Toner & T. Vidick (2008a). Entangled Games are Hard to approximate. In Proceedings of 49th IEEE Symposium on Foundations of Computer Science, 447–456.

  • J. Kempe & O. Regev (2010). No Strong Parallel Repetition with Entangled and Non-signaling Provers. In Proceedings of 25th Annual IEEE Conference on Computational Complexity, 7–15.

  • J. Kempe, O. Regev & B. Toner (2008b). Unique Games with Entangled Provers are Easy. In Proceedings of 49th IEEE Symposium on Foundations of Computer Science, 457–466.

  • J. Kempe & T. Vidick (2011). Parallel Repetition of Entangled Games. In 43th Annual ACM Symposium on Theory of Computing, 353–362.

  • Kitaev A. (1997) Quantum computations: Algorithms and error correction. Russian Math. Surveys 52(6): 1191–1249

    Article  MATH  MathSciNet  Google Scholar 

  • A. Kitaev & J. Watrous (2000). Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In 32nd Annual ACM Symposium on Theory of Computing, 608–617.

  • Kobayashi H., Matsumoto K. (2003) Quantum multi-prover interactive proof systems with limited prior entanglement. J. Comput. Syst. Sci. 66(3): 429–450

    Article  MATH  MathSciNet  Google Scholar 

  • D. Leung, B. Toner & J. Watrous (2008). Coherent state exchange in multi-prover quantum interactive proof systems. Technical report arXiv:0804.4118.

  • Oikhberg T. (2010) Completely bounded and ideal norms of multiplication operators and Schur multipliers. Integr. Equ. Oper. Theory 66(3): 425–440

    Article  MATH  MathSciNet  Google Scholar 

  • V. Paulsen (2002). Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

  • Pérez-García D., Wolf M.M., Palazuelos C., Villanueva I., Junge M. (2008) Unbounded violation of tripartite Bell inequalities. Comm. Math. Phys. 279(2): 455–486

    Article  MATH  MathSciNet  Google Scholar 

  • G. Pisier (1998). Non-Commutative Vector Valued L p -Spaces and Completely p-Summing Maps. Asterisque 247.

  • G. Pisier (2003). Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press.

  • Pisier G. (2012) Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 49(2): 237–323

    Article  MATH  MathSciNet  Google Scholar 

  • Pisier G., Shlyakhtenko D. (2002) Grothendieck’s theorem for operator spaces. Invent. Math.150(1): 185–217

    Article  MATH  MathSciNet  Google Scholar 

  • A. Rapaport,Ta-Shma (2007). On the power of quantum, one round, two prover interactive proof systems. Quantum Inf. Process. 6(6), 445–459.

  • Raz R. (1998) A parallel repetition theorem. SIAM Journal on Computing 27: 763–803

    Article  MATH  MathSciNet  Google Scholar 

  • O. Regev & T. Vidick (2012a). Elementary Proofs of Grothendieck Theorems for Completely Bounded Norms. J. Operator Theory.

  • O. Regev & T. Vidick (2012b). Quantum XOR games. Technical report arXiv:1207.4939

  • B. Simon (1981). Pointwise domination of matrices and comparison of S p norms. Pacific J. Math. 97, 471Ð475.

  • Smith R.R. (1983) Completely bounded maps between C*-algebras. J. London Math. Soc.27: 157–166

    Article  MATH  MathSciNet  Google Scholar 

  • T. Vidick (2013). Three-player entangled XOR games are NP-hard to approximate. Technical report arXiv:1302.1242.

  • Watrous J. (2003) PSPACE has constant-round quantum interactive proof systems. Theoretical Computer Science 292(3): 575–588

    Article  MATH  MathSciNet  Google Scholar 

  • Watrous J. (2009) Semidefinite programs for completely bounded norms. Theory of Computing 5: 217–238

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Palazuelos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooney, T., Junge, M., Palazuelos, C. et al. Rank-one quantum games. comput. complex. 24, 133–196 (2015). https://doi.org/10.1007/s00037-014-0096-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-014-0096-x

Keywords

Subject Classification

Navigation