Skip to main content

Advertisement

Log in

Large Violation of Bell Inequalities with Low Entanglement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we obtain violations of general bipartite Bell inequalities of order \({\frac{\sqrt{n}}{\log n}}\) with n inputs, n outputs and n-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acin A., Brunner N., Gisin N., Massar S., Pironio S., Scarani V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  2. Acín A., Durt T., Gisin N., Latorre J. I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002)

    Article  ADS  Google Scholar 

  3. Acín A., Gill R., Gisin N.: Optimal Bell tests do not require maximally entangled states. Phys. Rev. Lett. 95, 210402 (2005)

    Article  ADS  Google Scholar 

  4. Acin A., Masanes L., Gisin N.: From Bell’s Theorem to Secure Quantum Key Distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  5. Barak, B., Hardt, M., Haviv, I., Rao, A., Regev, O., Steurer, D.: Rounding parallel repetitions of unique games. In: Proc. 49th Annual IEEE Symp. on Foundations of Computer Science (FOCS), Piscataway, NJ: IEEE, 2008, pp. 374–383

  6. Bell J.S.: On the Einstein-Poldolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  7. Ben-Or, M., Hassidim, A., Pilpel, H.: Quantum Multi Prover Interactive Proofs with Communicating Provers. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), Piscataway, NJ: IEEE, 2008

  8. Blecher D. P., Paulsen V. I.: Tensor products of operator spaces. J. Funct. Anal. 99, 262–292 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brassard G., Broadbent A., Tapp A.: Quantum Pseudo-Telepathy. Foundations of Physics 35(11), 1877–1907 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Briet, J., Buhrman, H., Lee, T., Vidick, T.: Multiplayer XOR games and quantum communication complexity with clique-wise entanglement. http://arXiv.org/abs/0911.4007v1 [quant-ph], 2009

  11. Briët, J., Buhrman, H., Toner, B.: A generalized Grothendieck inequality and entanglement in XOR games. http://arXiv.org/abs/0901.2009v1 [quant-ph], 2009

  12. Brunner N., Gisin N., Scarani V., Simon C.: Detection loophole in asymmetric Bell experiments. Phys. Rev. Lett. 98, 220403 (2007)

    Article  ADS  Google Scholar 

  13. Brunner N., Pironio S., Acin A., Gisin N., Methot A.A., Scarani V.: Testing the Hilbert space dimension. Phys. Rev. Lett. 100, 210503 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Bourgain, J., Casazza, P.G., Lindenstrauss, J., Tzafriri, L.: Banach spaces with a unique unconditional basis, up to a permutation. Memoirs Am. Math. Soc. No. 322, Providence, RI: Amer. Math. Soc., 1985

  15. Buhrman H., Cleve R., Massar S., de Wolf R.: Non-locality and Communication Complexity. Rev. Mod. Phys. 82, 665–698 (2010)

    Article  ADS  Google Scholar 

  16. Buhrman, H., Scarpa, G., de Wolf, R.: Better Non-Local Games from Hidden Matching. http://arXiv.org/abs/1007.2359v1 [quant-ph], 2010

  17. Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for unique games. Proc. 38th ACM STOC, New York: ACM Press, 2006, pp. 205–214

  18. Gavinsky R.D., Jain R.: Entanglement- resistant two-prover interactive proof systems and non-adaptive PIRs. Quantum Information and Computation 9, 648–656 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and Limits of Nonlocal Strategies. In: Proceedings of the 19th IEEE Annual Conference on Computational Complexity (CCC 2004), Piscataway, NJ: IEEE, 2004, pp. 236–249

  20. Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect parallel repetition theorem for quantum XOR proof systems. In: Proc. 22nd IEEE Conference on Computational Complexity, Piscataway, NJ: IEEE, 2007, pp. 109–114

  21. Collins D., Gisin N., Linden N., Massar S., Popescu S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  22. Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity of non-signaling distributions. In: Proc. 34th Int. Symp. of the MFCS, Berlin-Heidelberg-New York: Springer-Verlag, 2009, pp. 270–281

  23. Defant A., Floret K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  24. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proceedings of IEEE Conference on Computational Complexity 2008, Piscataway, NJ: IEEE, 2008, pp. 199–210

  25. Donald M.J., Horodecki M., Rudolph O.: The uniqueness theorem for entanglement measures. Jour. Math. Phys. 43, 4252–4272 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Eberhard P.: Background level and counter efficiencies required for a loophole free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R750 (1993)

    Article  ADS  Google Scholar 

  27. Effros E.G., Ruan Z.-J.: Operator spaces. London Math. Soc. Monographs New Series. Clarendon Press, Oxford (2000)

    Google Scholar 

  28. Einstein A., Podolsky B., Rosen N.: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  29. Gisin N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Holenstein, T.: Parallel repetition: simplifications and the no-signaling case. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing (STOC) 2007, New York: ACM Press, 2007

  31. Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover one-round interactive proofs against nonlocal strategies. In: Proc. 24th IEEE Conference on Computational Complexity, Piscataway, NJ: IEEE, 2009, pp. 217–228

  32. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP=PSPACE. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), New York: ACM Press, pp. 573–582

  33. Junge, M.: Factorization theory for Spaces of Operators. Habilitationsschrift Kiel, (1996); see also: Preprint server of the University of Southern Denmark 1999, IMADA preprint: pp. 1999–2002

  34. Junge M., Navascues M., Palazuelos C., Pérez-García D., Scholz V. B., Werner R. F.: Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52, 012102 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  35. Junge M., Palazuelos C., Pérez-García D., Villanueva I., Wolf M.M.: Unbounded violations of bipartite Bell Inequalities via Operator Space theory. Commun. Math. Phys. 300(3), 715–739 (2010)

    Article  ADS  MATH  Google Scholar 

  36. Junge M., Palazuelos C., Pérez-García D., Villanueva I., Wolf M.M.: Operator Space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104, 170405 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. Junge M., Parcet J.: Mixed-norm inequalities and operator space L p embedding theory. Mem. Amer. Math. Soc. 203(31), 953 (2010)

    MathSciNet  Google Scholar 

  38. Junge M., Pisier G.: Bilinear forms on exact operator spaces and \({B(H)\otimes B(H)}\) . Geom. Func. Anal. 5, 329–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled games are hard to approximate. http://arXiv.org/abs/0704.2903v2 [quant-ph], 2007

  40. Kempe, J., Regev, O.: No Strong Parallel Repetition with Entangled and Non-signaling Provers. In: Proc. 25th CCC′10, Piscataway, NJ: IEEE, 2010, pp. 7–15

  41. Kempe, J., Regev, O., Toner, B.: The Unique Games Conjecture with Entangled Provers is False. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), Piscataway, NJ: IEEE, 2008

  42. Khot, S.:On the power of unique 2-prover 1-round games, In: Proceedings of the 34th annual ACM Symposium on Theory of Computing, New york: ACM Press, 2002, pp. 767–775

  43. Khot, S.: Vishnoi, N. K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into 1. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, Piscataway, NJ: IEEE, 2005, pp. 53–62

  44. Kwapien, S., Woyczynski, W.: Random Series and Stochastic Integrals: Single and Multiple. Probab. Appl., Boston, MA: Birkhäuser Boston, 1982

  45. Ledoux M., Talagrand M.: Probability in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York (1991)

    MATH  Google Scholar 

  46. Liang Y.-C., Doherty A.: Bounds on Quantum Correlations in Bell Inequality Experiments. Phys. Rev. A 75, 042103 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  47. Linial N., Mendelson S., Schechtman G., Shraibman A.: Complexity Measures of Sign Matrices. Combinatorica 27(4), 439–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Linial N., Shraibman A.: Lower Bounds in Communication Complexity Based on Factorization Norms. Random Structures and Algorithms 34, 368–394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Marcus, M.B., Pisier, G.: Random Fourier series with applications to harmonic analysis. Annals of Math. Studies 101, Princeton, NJ: Princeton Univ. Press, 1981

  50. Masanes L.: Universally-composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009)

    Article  ADS  Google Scholar 

  51. Masanes, Ll., Renner, R., Winter, A., Barrett, J., Christandl, M.: Security of key distribution from causality constraints. http://arXiv.org/abs/quant-ph/0606049v4, 2009

  52. Massar S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  53. Methot A.A., Scarani V.: An anomaly of non-locality. Quant. Inf. Comput. 7, 157 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Navascues M., Pironio S., Acin A.: Bounding the Set of Quantum Correlations. Phys. Rev. Lett. 98, 010401 (2007)

    Article  ADS  Google Scholar 

  55. Navascués M., Pironio S., Acín A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10, 073013 (2008)

    Article  ADS  Google Scholar 

  56. Paulsen V. I.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  57. Pérez-García D., Wolf M.M., Palazuelos C., Villanueva I., Junge M.: Unbounded violation of tripartite Bell inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)

    Article  ADS  MATH  Google Scholar 

  58. Pisier G.: An Introduction to Operator Spaces London Math Soc Lecture Notes Series 294. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  59. Pisier, G.: Non-Commutative Vector Valued Lp-Spaces and Completely p-Summing Maps. Asterisque 247 (1998)

  60. Pisier G.: The volume of convex bodies and Banach space geometry Cambridge Tracts in Mathematics Vol 94. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  61. Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS 60, Providence, RI: Amer. Math. Soc., 1986

  62. Pisier G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Am. Math. Soc. 585, 122 (1996)

    MathSciNet  Google Scholar 

  63. Pisier, G.:Probabilistic methods in the geometry of Banach spaces. In: Probability and Analysis (Varenna. Italy, 1985), Lecture Notes Math. 1206, Berlin-Heidelberg-New York: Springer, 1986, pp. 167–241

  64. Popescu S.: Bell’s Inequalities and Density Matrices: Revealing “Hidden” Nonlocality. Phys. Rev. Lett. 74, 2619 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Rao, A.: Parallel repetition in projection games and a concentration bound. STOC (2008), Piscataway, NJ: IEEE, 2008

  66. Raz R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27, 763–803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  67. Raz, R.: A counterexample to strong parallel repetition. In: 49th Annual IEEE Symposium on Foundations of Computer Science, Piscataway, NJ: IEEE, 2008, pp. 369–373

  68. Scarani V., Gisin N., Brunner N., Masanes L., Pino S., Acin A.: Secrecy extraction from no-signalling correlations. Phys. Rev. A 74, 042339 (2006)

    Article  ADS  Google Scholar 

  69. Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, London: Longman Scientific and Technical, 1989

  70. Tsirelson B.S.: Some results and problems on quan-tum Bell-type inequalities. Hadronic Journal Supplement 8(4), 329–345 (1993)

    MathSciNet  MATH  Google Scholar 

  71. Vertesi T., Pal K.F.: Bounding the dimension of bipartite quantum systems. Phys. Rev. A 79, 042106 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  72. Wehner S.: Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  73. Wehner S., Christandl M., Doherty A. C.: A lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78, 062112 (2008)

    Article  ADS  Google Scholar 

  74. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  75. Werner R.F., Wolf M.M.: Bell inequalities and Entanglement. Quant. Inf. Comp. 1(3), 1–25 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Palazuelos.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junge, M., Palazuelos, C. Large Violation of Bell Inequalities with Low Entanglement. Commun. Math. Phys. 306, 695–746 (2011). https://doi.org/10.1007/s00220-011-1296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1296-8

Keywords

Navigation