Skip to main content
Log in

Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207–221, 2016), we show how to use the theory in the analysis of response of nonlinear spring–dashpot and spring–dashpot–mass systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aragona, J., Colombeau, J.F., Juriaans, S.O.: Nonlinear generalized functions and jump conditions for a standard one pressure liquid-gas model. J. Math. Anal. Appl. 418(2), 964–977 (2014). doi:10.1016/j.jmaa.2014.04.002

    Article  MathSciNet  MATH  Google Scholar 

  2. Baty, R.S., Farassat, F., Tucker, D.H.: Nonstandard analysis and jump conditions for converging shock waves. J. Math. Phys. 49(6), 063101, 18 (2008). doi:10.1063/1.2939482. ISSN 0022-2488

  3. Biagioni, H.A.: A nonlinear theory of generalized functions, vol. 1421 of Lecture Notes in Mathematics, 2nd edn. Springer, Berlin (1990). doi:10.1007/BFb0089552. ISBN 3-540-52408-8

  4. Challamel, N., Rajagopal, K.R.: On stress-based piecewise elasticity for limited strain extensibility materials. Int. J. Non-Linear Mech. 81, 303–309 (2016). doi:10.1016/j.ijnonlinmec.2016.01.017. ISSN 0020-7462

  5. Colombeau, J.-F.: New generalized functions and multiplication of distributions, volume 84 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, (1984). (Notas de Matemática [Mathematical Notes], 90. ISBN 0-444-86830-5

  6. Colombeau, J.-F.: Multiplication of Distributions, vol. 1532 of Lecture Notes in Mathematics, Springer, Berlin (1992). A tool in mathematics, numerical engineering and theoretical physics. ISBN 3-540-56288-5

  7. Grosser, M., Farkas, E., Kunzinger, M., Steinbauer, R.: On the foundations of nonlinear generalized functions I and II. Mem. Amer. Math. Soc. 153 (729), xii+93, (2001). doi:10.1090/memo/0729. ISSN 0065-9266

  8. Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric theory of generalized functions with applications to general relativity, volume 537 of mathematics and its applications. Kluwer Academic Publishers, Dordrecht (2001). doi:10.1007/978-94-015-9845-3. ISBN 1-4020-0145-2

  9. Gsponer, A.: A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics. Eur. J. Phys. 30(1), 109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kunzinger, M., Steinbauer, R., Vickers, J.A.: Generalised connections and curvature. Math. Proc. Camb. Philos. Soc. 139(3), 497–521 (2005). doi:10.1017/S0305004105008649

    Article  MathSciNet  MATH  Google Scholar 

  11. Málek, J., Rajagopal, K.R., Suková, P.: Response of a class of mechanical oscillators described by a novel system of differential-algebraic equations. Appl. Mat. 61(1), 79–102 (2016). doi:10.1007/s10492-016-0123-0. ISSN 1572-9109

  12. Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Volume 259 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1992). ISBN 0-582-08733-3

  13. Ohkitani, K., Dowker, M.: Burgers equation with a passive scalar: dissipation anomaly and Colombeau calculus. J. Math. Phys., 51(3) (2010). doi:10.1063/1.3332370

  14. Pražák, D.: A remark on characterization of entropy solutions. Comput. Math. Appl. 53(3–4), 453–460 (2007). doi:10.1016/j.camwa.2006.02.043. ISSN 0898-1221

  15. Pražák, D., Rajagopal, K.R.: Mechanical oscillators described by a system of differential-algebraic equations. Appl. Mat. 57(2), 129–142 (2012). doi:10.1007/s10492-012-0009-8. ISSN 0862-7940

  16. Průša, V., Rajagopal, K.R.: Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Z. Angew. Math. Phys. 62(4), 707–740 (2011). doi:10.1007/s00033-010-0109-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Průša, V., Rajagopal, K.R.: On the response of physical systems governed by nonlinear ordinary differential equations to step input. Int. J. Non-Linear Mech. 81, 207–221 (2016). doi:10.1016/j.ijnonlinmec.2015.10.013

    Article  Google Scholar 

  18. Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003). doi:10.1023/A:1026062615145

    Article  MathSciNet  MATH  Google Scholar 

  19. Rajagopal, K.R.: A generalized framework for studying the vibrations of lumped parameter systems. Mech. Res. Commun. 37(5), 463–466 (2010). doi:10.1016/j.mechrescom.2010.05.010. ISSN 0093-6413

  20. Rosinger, E. E.: Generalized solutions of nonlinear partial differential equations, volume 146 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1987). (Notas de Matemática [Mathematical Notes]), 119. ISBN 0-444-70310-1

  21. E. E. Rosinger. Nonlinear Partial Differential Equations: An Algebraic View of Generalized Solutions, Volume 164 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1990). ISBN 0-444-88700-8

  22. Schwartz, L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)

    MathSciNet  MATH  Google Scholar 

  23. Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX–X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966)

  24. Steinbauer, R., Vickers, J.A.: The use of generalized functions and distributions in general relativity. Class. Quantum Grav. 23(10), R91 (2006). doi:10.1088/0264-9381/23/10/R01

    Article  MathSciNet  MATH  Google Scholar 

  25. Řehoř, M., Průša, V., Tůma, K.: On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting. Phys. Fluids 28(10), 103102 (2016). doi:10.1063/1.4964662

    Article  Google Scholar 

  26. Wineman, A.: Nonlinear viscoelastic solids–a review. Math. Mech. Solids 14(3), 300–366 (2009). doi:10.1177/1081286509103660. ISSN 1081-2865

  27. Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers—An Introduction. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  28. Yuan, Z., Průša, V., Rajagopal, K.R., Srinivasa, A.: Vibrations of a lumped parameter massspringdashpot system wherein the spring is described by a non-invertible elongation-force constitutive function. Int. J. Non-Linear Mech. 76, 154–163 (2015). doi:10.1016/j.ijnonlinmec.2015.06.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Průša.

Additional information

Vít Průša and Martin Řehoř were supported by the project LL1202 in the programme ERC-CZ funded by the Ministry of Education, Youth and Sports of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Průša, V., Řehoř, M. & Tůma, K. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots. Z. Angew. Math. Phys. 68, 24 (2017). https://doi.org/10.1007/s00033-017-0768-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0768-x

Mathematics Subject Classification

Keywords

Navigation