Skip to main content
Log in

The selection for dispersal: a diffusive competition model with a free boundary

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper considers the population dynamics of an invasive species and a resident species, using a diffusive competition model in a radially symmetric heterogeneous environment with a free boundary. We assume that the resident species diffuses and expands in \({\mathbb{R}^n}\) , and the invasive species initially resides in a finite ball, but invades the environment with a spreading front that evolves as the free boundary. Our investigation aims to understand how the model dynamics are affected by the dispersal rate \({d_u}\) , expansion capacity \({\mu}\) and initial number u 0 of the invasive species. We show that a spreading–vanishing dichotomy exists and obtain the sharp criteria for spreading and vanishing by varying the parameters d u , \({\mu}\) and u 0. For the invasive species, we found an unconditional selection for slow dispersal rate, but a conditional selection for fast dispersal rate, that is, the selection for fast dispersal depends on the expansion capacity and initial number of the invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In: Goldstein J.A. (eds.) Partial Differential Equations and Related Topics, Lecture Notes in Mathematics Series, pp. 5–49. Springer, Berlin (1975)

  2. Aronson D.G., Weinberger H.F.: Multidimensional nonlinear diffusion arising in population dynamics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bunting G., Du Y.H., Krakowski K.: Spreading speed revisited: analysis of a free boundary model. Netw. Heterog. Media (special issue dedicated to H. Matano) 7, 583–603 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Cosner C.: Reaction–diffusion–advection models for the effects and evolution of dispersal. Discrete Cont. Dyn. Syst. 34, 1701–1745 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantrell R.S., Cosner C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  6. Cantrell R.S., Cosner C., Lou Y.: Evolution of dispersal in heterogeneous landscape. In: Cantrell, R.S., Cosner, C., Ruan, S. (eds) Spatial Ecology, pp. 213–229. Chapman Hall/CRC Press, Boca Raton (2009)

  7. Dockery J., Hutson V., Mischaikow K., Pernarowski M.: The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du Y.H., Guo Z.M.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary II. J. Differ. Equ. 250, 4336–4366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du Y.H., Guo Z.M., Peng R.: A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265, 2089–2142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du Y.H., Lin Z.G.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42, 377–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du Y.H., Lin Z.G.: The diffusive competition model with a free boundary: invasion of a superior or inferior competitor. Discrete Cont. Dyn. Syst.-B (Special issue for Chris Cosner) 19(10), 3105–3132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du Y.H., Liu L.S.: Remarks on the uniqueness problem for the logistic equation on the entire space. Bull. Aust. Math. Soc. 73, 129–137 (2006)

    Article  MathSciNet  Google Scholar 

  13. Du, Y.H., Lou, B.D.: Spreading and vanishing in nonlinear diffusion problems with free boundaries, arXiv:1301.5373 (2013)

  14. Du Y.H., Ma L.: Logistic type equations on \({\mathbb{R}^n}\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 64, 107–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo J.S., Wu C.H.: On a free boundary problem for a two-species weak competition system. J. Dyn. Differ. Equ. 24, 873–895 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. : Can spatial variation alone lead to selection for dispersal?. Theory Pop. Biol. 24, 244–251 (1983)

    Article  MATH  Google Scholar 

  17. Hutson V., Martinez S., Mischaikow K., Vickers G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hutson V., Mischaikow K., Poláčik P.: The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hosono Y.: The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol. 60, 435–448 (1998)

    Article  MATH  Google Scholar 

  20. Lewis M.A., Li B.T., Weinberger H.F.: Spreading speed and the linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lei C.X., Lin Z.G., Zhang Q.Y.: The spreading front of invasive species in favorable habitat or unfavorable habitat. J. Differ. Equ. 257, 145–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin Z.G.: A free boundary problem for a predator–prey model. Nonlinearity 20, 1883–1892 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. McPeek M.A., Holt R.D.: The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140, 1010–1027 (1992)

    Article  Google Scholar 

  24. Peng R., Zhao X.-Q.: The diffusive logistic model with a free boundary and seasonal succession. Discrete Contin. Dyn. Syst. 33, 2007–2031 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang M.X.: On some free boundary problems of the Lotka–Volterra type prey–predator model. J. Differ. Equ. 256, 3365–3394 (2014)

    Article  MATH  Google Scholar 

  26. Wang M.X.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258, 1252–1266 (2015)

    Article  MATH  Google Scholar 

  27. Wang, M.X., Zhao, J.F.: A free boundary problem for a predator–prey model with double free boundaries, arXiv:1312.7751 (2013)

  28. Wang M.X., Zhao J.F.: Free boundary problem for a Lotka–Volterra competition system. J. Dyn. Differ. Equ. 26, 655–672 (2014)

    Article  MATH  Google Scholar 

  29. Zhao J.F., Wang M.X.: A free boundary problem of a predator–prey model with higher dimension and heterogeneous environment. Nonlinear Anal.: Real World Appl. 16, 250–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou P., Xiao D.M.: The diffusive logistic model with a free boundary in heterogeneous environment. J. Differ. Equ. 256, 1927–1954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. The selection for dispersal: a diffusive competition model with a free boundary. Z. Angew. Math. Phys. 66, 2143–2160 (2015). https://doi.org/10.1007/s00033-015-0519-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0519-9

Mathematics Subject Classification

Keywords

Navigation