Skip to main content
Log in

A Mathematical analysis of fluid motion in irreversible phase transitions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article addresses the mathematical analysis of a model for the irreversible solidification process of certain materials by taking in consideration the effects of natural convection in molten regions. Such a model consists of a highly nonlinear system of partial differential equations coupled to a doubly nonlinear differential inclusion. The existence of weak–strong solutions for the system is proved, and certain mathematical effects of advection on the regularity of the solutions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, N.: Numerical simulations of transport processes in multicomponent systems related to solidification problem. Ph.D. Thesis EPFL (1995)

  2. Akagi G.: Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differ. Equ. 231, 32–56 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbu V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)

    Book  Google Scholar 

  4. Beckermann C., Diepers H.-J., Steinbach I., Karma A., Tong X.: Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)

    Article  MATH  Google Scholar 

  5. Beckermann C., Viskanta R.: Natural convection solid/liquid phase change in porous media. Int. J. Heat Mass Transf. 31(I), 35–46 (1988)

    Article  Google Scholar 

  6. Blanc Ph., Gasser L., Rappaz J.: Existence for a stationary model of binary alloy solidification. Math. Model. Numer. Anal. 29, 687–699 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Blanchard, D., Frémond, M., Visintin, A.: Bui, H.D., Nguyen, Q.S. (eds) Phase Change with Dissipation. Thermomechanical in Coupling Solids. North Holland, pp. 411–418 (1987)

  8. Boettinger W.J., Warren Beckermann C., Karma A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163–194 (2002)

    Article  Google Scholar 

  9. Boldrini J.L., de Miranda L.H., Planas G.: On singular Navier–Stokes equations and irreversible phase-transitions. Commun. Pure Appl. Anal. 11, 2055–2078 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boldrini J.L., de Miranda L.H., Planas G.: Existence and fractional regularity of solutions for a doubly nonlinear differential inclusion. J. Evol. Equ. 13(3), 535–560 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Boldrini J.L., Planas G.: A tridimensional phase-field model with convection for phase change of an alloy. Discret. Contin. Dyn. Syst. A 13, 429–450 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boldrini J.L., Vaz C.L.D.: Existence and regularity of solutions of a phase field model for solidification with convection of pure materials in two dimensions. Electron. J. Diff. Equ. 109, 1–25 (2003)

    MathSciNet  Google Scholar 

  13. Bonetti E.: Global solution to a nonlinear phase transition model with dissipation. Adv. Math. Sci. Appl. 12, 355–376 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Bonfanti G., Frémond M., Luterotti F.: Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10, 1–24 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Brezis, H.: Opératours Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Math. Studies, vol. 5. North Holland, Amsterdan (1973)

  16. Caginalp G., Jones J.: A derivation and analysis of phase field models of thermal alloys. Annal. Phys. 237, 66–107 (1995)

    Article  Google Scholar 

  17. Chabrowski, J.: Variational Methods for Potential Operator Equations. With Applications to Nonlinear Elliptic Equations, de Gruyter Stud. Math., vol. 24. Walter de Gruyter, Berlin (1997)

  18. Colli P., Krejčí P., Rocca E., Sprekels J.: Nonlinear evolution inclusions arising from phase change models. Czechoslovak Math. J. 57, 1067–1098 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. de Miranda L.H., Montenegro M.: A priori estimates for a class of degenerate elliptic equations. Nonlinear Differ. Equ. Appl. 20(5), 1683–1699 (2013)

    Article  MATH  Google Scholar 

  20. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

  21. Dimova K., Meyer-Spasche R.: On a moving boundary model of anomalous heat transport in a Tokamak plasma. Intern. J. Pure Appl. Math. 47(4), 589–608 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Frémond M., Visintin A.: Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible. C. R. Acad. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301, 1265–1268 (1985)

    MATH  Google Scholar 

  23. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, 2 nd edn. Steady-state problems. Springer Monographs in Mathematics, Springer, New York (2011)

  24. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, vol. 5. Springer, Berlin (1986)

  25. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program, Boston (1985)

    MATH  Google Scholar 

  26. Knees D.: Global stress regularity of convex and some non convex variational problems. Ann. Mat. Pura Appl. 187, 157–184 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Koshelev, A.: Regularity problem for Quasilinear Elliptic and Parabolic Systems, vol. 1614, Lecture notes in mathematics. Springer, Berlin (1995)

  28. Kufner A., John O., Fučik S.: Function Spaces. Noordhoff, Academia Leyden (1977)

    MATH  Google Scholar 

  29. Laurenç P., Schimperma G., Stefanelli U.: Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl. 271, 426–442 (2002)

    Article  MathSciNet  Google Scholar 

  30. Luterotti F., Schimperma G., Stefanelli U.: Global solution to a phase field model with irreversible and constrained phase evolution. Q. Appl. Math. 60, 301–316 (2002)

    MATH  Google Scholar 

  31. Planas G., Boldrini J.L.: A bidimensional phase-field model with convection for change phase of an alloy. J. Math. Anal. Appl. 303, 669–687 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997)

  33. Simon J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Voller V.R., Cross M., Markatos N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24, 271–284 (1987)

    Article  MATH  Google Scholar 

  35. Voller V.R., Prakash C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Mass. Transf. 30, 1709–1719 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Planas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldrini, J.L., de Miranda, L.H. & Planas, G. A Mathematical analysis of fluid motion in irreversible phase transitions. Z. Angew. Math. Phys. 66, 785–817 (2015). https://doi.org/10.1007/s00033-014-0434-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0434-5

Mathematics Subject Classification

Keywords

Navigation