Skip to main content
Log in

Nonlinear evolution inclusions arising from phase change models

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti, G. Prodi: A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34. Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  2. J.-P. Aubin, I. Ekeland: Applied Nonlinear Analysis. John Wiley & Sons, New York, 1984.

    MATH  Google Scholar 

  3. V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.

    MATH  Google Scholar 

  4. P. Bates, J. Han: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Differ. Equations 212 (2005), 235–277.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol. 5. North-Holland, Amsterdam, 1973.

    Google Scholar 

  6. M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121. Springer-Verlag, New York, 1996.

    Google Scholar 

  7. J. Cahn, J. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958), 258–267.

    Article  Google Scholar 

  8. C. K. Chen, P. C. Fife: Nonlocal models of phase transitions in solids. Adv. Math. Sci. Appl. 10 (2000), 821–849.

    MATH  MathSciNet  Google Scholar 

  9. P. Colli: On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math. 9 (1992), 181–203.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Colli, A. Visintin: On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990), 737–756.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Dunford, J. T. Schwartz: Linear Operators. Part I. General Theory. Interscience Publishers, New York, 1958.

    Google Scholar 

  12. T. Fukao, N. Kenmochi, and I. Pawlow: Transmission problems arising in Czochralski process of crystal growth. In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 17 (N. Kenmochi, M. Niezgódka, and M. Ôtani, eds.). Gakkotosho, Tokyo, 2001, pp. 228–243.

    Google Scholar 

  13. H. Gajewski: On a nonlocal model of non-isothermal phase separation. Adv. Math. Sci. Appl. 12 (2002), 569–586.

    MATH  MathSciNet  Google Scholar 

  14. H. Gajewski, K. Zacharias: On a nonlocal phase separation model. J. Math. Anal. Appl. 286 (2003), 11–31.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Statist. Phys. 87 (1997), 37–61.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Giacomin, J. L. Lebowitz: Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58 (1998), 1707–1729.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Haraux: Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol. 17. Masson, Paris, 1991.

    Google Scholar 

  18. E. Hille, R. Phillips: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31. Am. Math. Soc., Providence, 1957.

    Google Scholar 

  19. N. Kenmochi, M. Niezgódka, and I. Pawlow: Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Differ. Equations 117 (1995), 320–356.

    Article  MATH  Google Scholar 

  20. A. Miranville: Generalized Cahn-Hilliard equations based on a microforce balance. J. Appl. Math. 4 (2003), 165–185.

    Article  MathSciNet  Google Scholar 

  21. J. F. Rodrigues: Variational methods in the Stefan problem. In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol. 1584 (A. Visintin, ed.). Springer-Verlag, Berlin, 1994, pp. 147–212.

    Google Scholar 

  22. M. Schechter: Principles of Functional Analysis. Academic Press, New York-London, 1971.

    MATH  Google Scholar 

  23. J. Simon: Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. 146 (1987), 65–96.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Colli.

Additional information

The Italian authors would like to point out financial support from theMIUR-COFIN 2002 research program on “Free boundary problems in applied sciences”. The second author was supported by GA ČR under Grant No. 201/02/1058, and by GNAMPA of INDAM during his stay at Pavia in May 2003: in this respect, the kind hospitality of the Department of Mathematics in Pavia is gratefully acknowledged as well. The work also benefited from partial support of the IMATI of CNR in Pavia, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colli, P., Krejčí, P., Rocca, E. et al. Nonlinear evolution inclusions arising from phase change models. Czech Math J 57, 1067–1098 (2007). https://doi.org/10.1007/s10587-007-0114-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-007-0114-0

Keywords

Navigation