Skip to main content
Log in

Green-Naghdi rate of the Kirchhoff stress and deformation rate: the elasticity tensor

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The elasticity tensor providing the power-conjugation of the Green-Naghdi rate of the Kirchhoff stress and the deformation rate is required, e.g. by the commercially available Finite Element package ABAQUS/Standard for the material user subroutine UMAT, used to input material behaviours other than those included in the libraries of the package. This elasticity tensor had been studied in the literature, but its symmetries have only been briefly discussed, and only its component form in Cartesian coordinates was known. In this work, we derived a covariant, component-free expression of this elasticity tensor and thoroughly studied its symmetries. We found that, although symmetry on both pair of feet (indices) has been deemed to be desirable in the literature, the expression of the tensor available to-date in fact possesses only symmetry on the first pair of feet (indices), whereas the second pair lacks symmetry, and therefore carries a skew-symmetric contribution. This contribution is unnecessary, as it is automatically filtered in the contraction of the elasticity tensor with the symmetric deformation rate tensor. In order to avoid carrying this unnecessary skew-symmetric contribution in the computations, we employ a tensor identity that naturally symmetrises the second pair of feet of the elasticity tensor. We demonstrated the validity and robustness of the implementation of the user-defined material based on this tensor representation by simulating a benchmark problem consisting in biaxial tests of porcine and human atrial tissue, with material properties taken from previously performed experiments. We compared the results obtained by means of our user-defined material and those obtained through an equivalent built-in material, and obtained identical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS: Abaqus v6.9 Documentation. Simulia, Dassault Systémes, Providence (2009)

    Google Scholar 

  2. Altenbach H., Eremeyev V.A.: On the effective stiffness of plates made of hyperelastic materials with initial stresses. Int. J. Non-Linear Mech. 45, 976–981 (2010)

    Article  Google Scholar 

  3. Altenbach, H., Eremeyev, V.A.: Vibration analysis of non-linear 6-parameter prestressed shell. Meccanica, doi:10.1007/s11012-013-9845-1

  4. Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. ZAMP—Zeitschrift für Angewandte Mathematik und Physik (J. Appl. Math. Phys.), (in press)

  5. Ateshian G.A., Weiss J.A.: Anisotropic hydraulic permeability under finite deformation. J. Biomech. Eng. 132, 111004 (2010)

    Article  Google Scholar 

  6. Atluri S.N., Cazzani A.: Rotations in computational solid mechanics. Arch. Comput. Methods Eng. 2, 49–138 (1995)

    Article  MathSciNet  Google Scholar 

  7. Auffray, N.: On anisotropic polynomial relations for the elasticity tensor. Math. Mech. Solids. doi:10.1177/1081286513507941

  8. Auffray N., Kolev B., Petitot M.: On the algebraic structure of isotropic generalized elasticity theories. J. Elast. 115, 77–103 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellini C., Di Martino E.S.: A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J. Biomech. Eng. 134, 021008 (2012)

    Article  Google Scholar 

  10. Bellini C., Di Martino E.S., Federico S.: Mechanical behaviour of the human atria. Ann. Biomed. Eng. 41, 1478–1490 (2013)

    Article  Google Scholar 

  11. Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  12. Cazzani A., Atluri S.N.: Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput. Mech. 11, 229–251 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cazzani A., Lovadina C.: On some mixed finite element methods for plane membrane problems. Comput. Mech. 20, 560–572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cuomo M., Contrafatto L.: Stress rate formulation for elastoplastic models with internal variables based on augmented lagrangian regularisation. Int. J. Solids Struct. 37, 3935–3964 (2000)

    Article  MATH  Google Scholar 

  15. Curnier A., He Q.-C., Zysset P.: Conewise linear elastic materials. J. Elast. 37, 1–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in n-th gradient continua: approach à la D’Alembert. ZAMP—Zeitschrift für Angewandte Mathematik und Physik (J. Appl. Math. Phys.) 63, 1119–1141 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Epstein M.: The Geometrical Language of Continuum Mechanics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  18. Eremeyev V.A., Pietraszkiewiecz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)

    Article  MATH  Google Scholar 

  19. Eremeyev V.A., Pietraszkiewiecz W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49, 1993–2005 (2012)

    Article  Google Scholar 

  20. Eringen A.C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)

    Google Scholar 

  21. Federico S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47(2), 273–284 (2012)

    Article  Google Scholar 

  22. Federico, S.: Some remarks on metric and deformation. Math. Mech. Solids. doi:10.1177/1081286513506432 (2013)

  23. Federico S., Grillo A., Giaquinta G., Herzog W.: Convex Fung-type potentials for biological tissues. Meccanica 43, 279–288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fung Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213, 1532–1544 (1967)

    Google Scholar 

  25. Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissue. Springer, New York (1981)

    Book  Google Scholar 

  26. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47, 388–401 (2012)

    Article  Google Scholar 

  27. Grillo A., Federico S., Wittum G., Imatani S., Giaquinta G., Mićunović M.V.: Evolution of a fibre-reinforced growing mixture. Nuovo Cimento C 32, 97–119 (2009)

    Google Scholar 

  28. Grillo, A., Wittum, G.: Growth and mass transfer in multi-constituent biological materials. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.), ICNAAM 2010, International Conference on Numerical Analysis and Applied Mathematics, in AIP Conference Proceedings, vol. 1281, pp. 261–283, Rhodes, Greece, 19–25 September 2010. doi:10.1063/1.3498474

  29. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids. doi:10.1177/1081286513515265

  30. Hughes T.J.R., Marsden J.E.: Some applications of geometry in continuum mechanics. Rep. Math. Phys. 12, 35–44 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jog C.S.: A concise proof of the representation theorem for fourth-order isotropic tensors. J. Elast. 85, 119–124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM—Zeitschrift für Angewandte Mathematik und Mechanik (J. Appl. Math. Mech.) 92, 426–444 (2012)

    MATH  MathSciNet  Google Scholar 

  33. Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus de l’Académie des Sciences II B 339, 625–640 (2011)

    Google Scholar 

  34. Marsden J.E., Hughes T.J.R.: The Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliff (1983)

    Google Scholar 

  35. Mehrabadi M.M., Nemat-Nasser S.: Some basic kinematical relations for finite deformations of continua. Mech. Mater. 87, 127–138 (1987)

    Article  Google Scholar 

  36. Prot V., Skallerud B., Holzapfel G.A.: Transversely isotropic membrane shells with application to mitral valve mechanics. constitutive modelling and finite element implementation. Int. J. Numer. Methods Eng. 71(8), 987–1008 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Segev, R.: Notes on metric independent analysis of classical fields. Math. Methods Appl. Sci. 36(5), 497–566 (2013)

  38. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  39. Sun W., Chaikof E.L., Levenston M.E.: Numerical approximation of tangent moduli for Finite Element implementations of nonlinear hyperelastic material models. J. Biomech. Eng. 130, 061003 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Federico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellini, C., Federico, S. Green-Naghdi rate of the Kirchhoff stress and deformation rate: the elasticity tensor. Z. Angew. Math. Phys. 66, 1143–1163 (2015). https://doi.org/10.1007/s00033-014-0421-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0421-x

Mathematics Subject Classification

Keywords

Navigation