Skip to main content
Log in

Kelvin–Helmholtz instability with a free surface

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The well-posedness of the hydrostatic equations is linked to long wave stability criteria for parallel shear flows. We revisit the Kelvin--Helmholtz instability with a free surface. In the wall-bounded case, the flow is unstable to all wave lengths. Short wave instabilities are localized and independent of boundary conditions. On the other hand, long waves are shown to be stable if the upper boundary is a free surface and gravity is sufficiently small. We also consider smooth velocity profiles of the base flow rather than a velocity jump. We show that stability of long waves for small gravity generally holds for monotone profiles U(y). On the other hand, this need not be the case if U is not monotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenier Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12, 495–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch D., Renardy M.: Well-posedness of two-layer shallow-water flow between two horizontal rigid plates. Nonlinearity 24, 1081–1088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burns J.C.: Long waves in running water. Proc. Camb. Phil. Soc. 49, 695–706 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs and Physics. Clarendon Press, Oxford, pp. xix+654 (1961)

  5. Duchêne V.: Asymptotic shallow water models for internal waves in a two-fluid system with a free surface. SIAM J. Math. Anal. 42, 2229–2260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  7. Friedlander S., Yudovich V.: Instabilities in Fluid Motion. Notices Am. Math. Soc. 46, 1358–1367 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Guyenne P., Lannes D., Saut J.-C.: Well-posedness of the Cauchy problem for models of large amplitude internal waves. Nonlinearity 23, 237–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heisenberg W.: Über Stabilität and Turbulenz von Flüssigkeitströmen. Ann. Phys. 74, 577–627 (1924)

    Article  Google Scholar 

  10. Hur V.M., Lin Z.: Unstable surface waves in running water. Commun. Math. Phys. 282, 733–796 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaffel A., Renardy M.: Surface modes in inviscid free surface shear flows. Z. Angew. Math. Mech. 91, 649–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lannes, D.: A stability criterion for two-fluid interfaces and applications. Submitted (2011)

  13. Lin, C.C.: On the stability of two-dimensional parallel flows. In: Proceedings of the National Academy of Sciences, pp. 316–324 (1944)

  14. Lin Z.W.: Some recent results on instability of ideal plane flows. Contemp. Math 371, 217–229 (2005)

    Article  Google Scholar 

  15. Longuet-Higgins M.S.: Instabilities of a horizontal shear flow with a free surface. J. Fluid Mech. 364, 147–162 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morland L.C., Saffman P.G., Yuen H.C.: Waves generated by shear layer instabilities. Proc. R. Soc. Lond. A 433, 441–450 (1991)

    Article  MATH  Google Scholar 

  17. Renardy M.: Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch. Rational Mech. Anal. 194, 877–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Renardy M.: On hydrostatic free surface problems. J. Math. Fluid Mech. 13, 89–93 (2011)

    Article  MathSciNet  Google Scholar 

  19. Renardy, M.Y.: On the stability of inviscid parallel shear flows with a free surface. J. Math. Fluid Mech. (submitted)

  20. Shirra V.I.: Surface waves on shear currents: Solution of the boundary-value problem. J. Fluid Mech. 252, 565–584 (1993)

    Article  MathSciNet  Google Scholar 

  21. Stern M.E., Adam Y.A.: Capillary waves generated by a shear current in water. Mem. Soc. R. Liège 6, 179–185 (1973)

    Google Scholar 

  22. Voronovich A.G., Lobanov E.D., Rybak S.A.: On the stability of gravitational-capillary waves in the presence of a vertically non-uniform current. Izv. Atmos. Ocean Phys. 16, 220–222 (1980)

    Google Scholar 

  23. Yih C.S.: Surface waves in flowing water. J. Fluid Mech. 51, 209–220 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Renardy.

Additional information

This research was supported by Agence Nationale de La Recherche under Grant ANR-08-BLAN-0301-01 and by the National Science Foundation under Grant DMS-1008426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bresch, D., Renardy, M. Kelvin–Helmholtz instability with a free surface. Z. Angew. Math. Phys. 64, 905–915 (2013). https://doi.org/10.1007/s00033-012-0270-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0270-4

Mathematics Subject Classification (2010)

Keywords

Navigation