Skip to main content
Log in

REDUCTIVE COMPACT HOMOGENEOUS CR MANIFOLDS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We define and investigate a class of compact homogeneous CR manifolds, that we call \( \mathfrak{n} \)-reductive. They are orbits of minimal dimension of a compact Lie group K 0 in algebraic affine homogeneous spaces of its complexification K. For these manifolds we obtain canonical equivariant fibrations onto complex flag manifolds, generalizing the Hopf fibration \( {S^3}\to \mathbb{C}{{\mathbb{P}}^1} \). These fibrations are not, in general, CR submersions, but satisfy the weaker condition of being CR-deployments; to obtain CR submersions we need to strengthen their CR structure by lifting the complex stucture of the base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alekseevsky, A. Spiro, Compact homogeneous CR manifolds, J. Geom. Anal. 12 (2002), no. 2, 183–201. MR 1888514 (2003e:32062).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. V. Alekseevsky, A. Spiro, Invariant CR structures on compact homogeneous manifolds, Hokkaido Math. J. 32 (2003), no. 2, 209–276. MR 1996278(2004f:32047).

    MathSciNet  MATH  Google Scholar 

  3. A. Altomani, C. Medori, M. Nacinovich, The CR structure of minimal orbits in complex flag manifolds, J. Lie Theory 16 (2006), no. 3, 483–530. MR 2248142 (2007c:32043).

    MathSciNet  MATH  Google Scholar 

  4. A. Altomani, C. Medori, M. Nacinovich, On homogeneous and symmetric CR manifolds, Boll. Unione Mat. Ital. (9) 3 (2010), no. 2, 221–265. MR 2666357 (2011e:32045).

    MathSciNet  MATH  Google Scholar 

  5. A. Altomani, C. Medori, M. Nacinovich, Orbits of real forms in complex flag manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), no. 1, 69–109. MR 2668874.

    MathSciNet  MATH  Google Scholar 

  6. A. Andreotti, G. A. Fredricks, Embeddability of real analytic Cauchy−Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 2, 285–304. MR 541450 (80h:32019).

    MathSciNet  MATH  Google Scholar 

  7. W. M. Boothby, H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721–734. MR 0112160 (22 #3015).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104. MR 0294349 (45 #3419).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bourbaki, Éléments de Mathématique. Fasc. XXXVIII: Groupes et Algèbres de Lie. Chap. VII: Sous-Algèbres de Cartan, Éléments Réguliers. Chap. VIII: Algèbres de Lie Semi-Simples Déployées, Actualités Scientifiques et Industrielles, No. 1364, Hermann, Paris, 1975. MR 0453824 (56 #12077). Russian transl.: Н. Бурбаки, Группы и алгебры Ли. Подалгебры Картана, pегуляpные злeмeнты, paсщeпляeмые полупpocтые aлгeбpы Ли, Миp, M., 1978.

  10. J.-Y. Charbonnel, H. O. Khalgui, Classification des structures CR invariantes pour les groupes de Lie compacts, J. Lie Theory 14 (2004), no. 1, 165–198. MR 2040175 (2005b:22012).

    MathSciNet  MATH  Google Scholar 

  11. A. A. George Michael, On the conjugacy theorem of Cartan subalgebras, Hiroshima Math. J. 32 (2002), no. 2, 155–163. MR 1925894(2004f:17011).

    MathSciNet  MATH  Google Scholar 

  12. Б. Гиллиган, А. Т. Xaклберри, Слоения и глобализации компактных однородныx CR-многообразий, Изв. PAH, cep. мат 73 (2009), no. 3, 67–126. Engl. transl.: B. Gilligan, A. T. Huckleberry, Fibrations and globalizations of compact homogeneous CR-manifolds, Izvestiya: Math. 73 (2009), no. 3, 501–553. MR 2553089 (2011c:32056).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, 1975. MR 0396773 (53 #633). Russian transl.: Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980.

    Book  Google Scholar 

  14. A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston, Boston, MA, 2002. MR 1920389 (2003c:22001).

    MATH  Google Scholar 

  15. B. Kostant, Root systems for Levi factors and Borel−de Siebenthal theory, in: Symmetry and Spaces, Progress in Mathematics, Vol. 278, Birkhäuser Boston, Boston, MA, 2010, pp. 129–152. MR 2562626 (2011b:17023).

    Chapter  Google Scholar 

  16. T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hiroshima Math. J. 18 (1988), no. 1, 59–67. MR 935882(89f:53073).

    MathSciNet  MATH  Google Scholar 

  17. Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J 16 (1960), 205–218. MR 0109854 (22#739).

    MathSciNet  MATH  Google Scholar 

  18. Y. Matsushima, A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137–155. MR 0123739 (23 #A1061).

    MathSciNet  MATH  Google Scholar 

  19. C. Medori, M. Nacinovich, Algebras of infinitesimal CR automorphisms, J. Algebra 287 (2005), no. 1, 234–274. MR 2134266 (2006a:32043).

    Article  MathSciNet  MATH  Google Scholar 

  20. В.В. Морозов, Доказательство теоремы регулярности, УMН XI (1956), №5, 191–194 (Russian). [V. V. Morozov, Proof of the theorem of regularity, Usp. Mat. Nauk XI (1956), №5, 191–194. MR 0088488 (19,527c)].

    Google Scholar 

  21. G. D. Mostow, On covariant fiberings of Klein spaces, Amer. J. Math. 77 (1955), 247–278. MR 0067901 (16,795d).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. D. Mostow, Covariant fiberings of Klein spaces. II, Amer. J. Math. 84 (1962), 466–474. MR 0142688 (26 #257).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. L. Onishchik, È. B. Vinberg, Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  24. В. П. Платонов, Доказательство гипотезы конечности для разрешимых подгрупп алгебраических групп, Сиб. мат. жypн. 10 (1969), 1084–1090. Engl. transl.: V. P. Platonov, A proof of the finiteness hypothesis for solvable subgroups of algebraic groups, Sib. Math. J. 10 (1969), 800–804. MR 0254145 (40 #7355).

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Ю. Вейсфейлер, Об одном классе унипотентных подгрупп полупростых алгебраических групп, УМН XXI (1966), №2, 222–223. Engl. transl.: B. Weisfeiler, On one class of unipotent subgroups of semisimple algebraic groups, arXiv:math/0005149v1 [math.AG].

  26. J. A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Altomani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altomani, A., Medori, C. & Nacinovich, M. REDUCTIVE COMPACT HOMOGENEOUS CR MANIFOLDS. Transformation Groups 18, 289–328 (2013). https://doi.org/10.1007/s00031-013-9218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-013-9218-9

Keywords

Navigation