Skip to main content
Log in

A categorification of the Burau representation at prime roots of unity

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We construct a p-DG structure on an algebra Koszul dual to a zigzag algebra used by Khovanov and Seidel to construct a categorical braid group action. We show there is a braid group action in this p-DG setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We will abbreviate it as the “NY resolution” in the main text.

  2. It is usually denoted by \(A \# H\).

  3. To be more precise, this pairing map is given by the natural pairing \(\mathbf {p}(L_i)\otimes {\mathrm{HOM}}_{A_n^!}(\mathbf {p}(L_i), A_n^!){\longrightarrow }A_n^!\), \((x,f)\mapsto f(x)\). It involves a choice of a cofibrant replacement and thus is only well defined in the derived category.

References

  1. Bondal, A.I., Kapranov, M.M.: Enhanced triangulated categories. Mat. Sb. 181(5), 669–683 (1990). English version: Mat. USSR Sb. 70(1), 93–107 (1991)

  2. Cautis, S., Licata, A., Sussan, J.: Braid group actions via categorified Heisenberg complexes. Compos. Math. (2013). arXiv:1207.5245

  3. Elias, B., Qi, Y.: A categorification of some small quantum groups II. (2013). arXiv:1302.5478

  4. Huerfano, S., Khovanov, M.: A category for the adjoint representation. J. Algebra 246(2), 514–542 (2001). arXiv:math/0002060

    Article  MathSciNet  MATH  Google Scholar 

  5. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000). arXiv:math/9908171

    Article  MathSciNet  MATH  Google Scholar 

  6. Khovanov, M.: Hopfological algebra and categorification at a root of unity: the first steps. (2006). arXiv:math/0509083

  7. Khovanov, M., Qi, Y.: An approach to categorification of some small quantum groups. Quantum Topol. (2012). arXiv:1208.0616

  8. Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15, 203–271 (2002). arXiv:math/0006056

    Article  MathSciNet  MATH  Google Scholar 

  9. Mayer, W.: A new homology theory. I. Ann. Math. 43(2), 370–380 (1942a)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mayer, W.: A new homology theory. II. Ann. Math. 43(3), 594–605 (1942b)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qi, Y.: Hopfological algebra. Compos. Math. 150(01), 1–45 (2014). arXiv:1205.1814

    Article  MathSciNet  MATH  Google Scholar 

  12. Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001). arXiv:math/0001043

    Article  MathSciNet  MATH  Google Scholar 

  13. Webster, B.: Knot invariants and higher representation theory I: Diagrammatic and geometric categorification of tensor products. (2010). arXiv:1001.2020

  14. Webster, B.: Knot invariants and higher representation theory II: The categorification of quantum knot invariants. (2010). arXiv:1005.4559

  15. Webster, B.: Knot invariants and higher representation theory. (2013). arXiv:1309.3796

  16. Webster, B.: Tensor product algebras, Grassmannians and Khovanov homology. (2013). http://people.virginia.edu/~btw4e/Montreal

Download references

Acknowledgments

The authors would like to thank Mikhail Khovanov for valuable suggestions throughout the course of this project and his continued support. The first author thanks his friend Rumen Zarev for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Sussan.

Appendix: Maps between simples

Appendix: Maps between simples

For \( \lambda =1\) the unique non-trivial map (up to homotopy) \( \psi _{i+1} :L_{i+1}[1] \lbrace 2p-1 \rbrace \rightarrow L_i \) is easy to construct. The map between their cofibrant resolutions

and

respectively is given by the identity map \( P_{i+1} \{ -2p+3+2r \} \rightarrow P_{i+1} \{-2p+3+2r \} \) for \( r=0,\ldots ,p-2 \) and is zero otherwise.

For \( \lambda =1\) the unique (up to homotopy) map \( \phi _i :L_i \rightarrow L_{i+1}[1] \{ 1 \} \) is more difficult to construct. For \( p=2\) the map is given by:

(5.23)

For a prime \( p>2\) there is a map \( \phi _i :L_i \rightarrow L_{i+1}[1] \{ 1 \} \) between the cofibrant resolution of \( L_i\)

and the cofibrant resolution of \( L_{i+1}[1] \{ 1 \} \)

given on components as follows:

  • \( d_j :P_i \rightarrow P_{i+1} \{-2p+3+2j \} \) for \( j=0,\ldots ,p-2\)

    \( d_j = \cdot (-1)^{j+1} (p-j-2)!(i|i+1)(i+1|i|i+1)^{p-j-2} \)

  • \( b :P_i \rightarrow P_{i+2} \{ -2p+2 \} \)

    \( b = \cdot -(i|i+1|i+2)(i+2|i+1| i+2)^{p-2} \)

  • \( p_{k,j} :P_{i+1} \{ -1-2k \} \rightarrow P_{i+1} \{ -2p+3+2j \} \) for \( 0 \le j \le p-3-k \)

    \( p_{k,j} = \cdot (-1)^{k+j} \frac{(p-2-j)!}{(k+1)!} (i+1|i|i+1)^{p-j-k-2} \)

  • \( p_{k,p-2-k} :P_{i+1} \{ -1-2k \} \rightarrow P_{i+1} \{ -2k-1 \} \) for \( 0 \le k \le p-2 \)

    \( p_{k,p-2-k} = -1\)

  • \( h_{k,j} :P_{i-1} \{-1-2k \} \rightarrow P_{i+1} \{ -2p+3+2j \} \) for \( 0 \le j \le p-3-k \)

    \( h_{k,j} = \cdot \frac{(-1)^{k+1} k}{(k+1)!(j+1)!} (i-1|i|i+1)(i+1|i|i+1)^{p-j-k-3} \)

  • \( m_k :P_{i+1} \{-1-2k \} \rightarrow P_{i+2} \{-2p+2 \}\) for \( 0 \le k \le p-3\)

    \( m_k=\cdot \frac{(-1)^k}{(k+1)!} (i+1|i+2)(i+2|i+1|i+2)^{p-k-2} \)

  • \( m_{p-2} :P_{i+1} \{-2p+3 \} \rightarrow P_{i+2} \{-2p+2 \} \)

    \( m_{p-2} = -(i+1|i+2) \)

  • \( n_{p-2} :P_{i+1} \{-2p+3 \} \rightarrow P_{i} \{-2p+2 \} \)

    \( n_{p-2} = 2(i+1|i)\)

  • \( f_k :P_{i-1} \{ -1-2k \} \rightarrow P_{i+2} \{-2p+2 \} \) for \( 1 \le k \le p-3 \)

    \( f_k = \cdot \frac{(-1)^{k+1} k}{(k+1)!} (i-1|i|i+1|i+2)(i+2|i+1|i+2)^{p-k-3} \)

  • \( g_{p-2} :P_{i-1} \{-2p+3\} \rightarrow P_i \{-2p+2\} \)

    \( g_{p-2}= 2(i-1|i) \)

  • \( \gamma :P_i \{-2p+2 \} \rightarrow P_i \{-2p+2 \} \)

    \( \gamma =1 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Sussan, J. A categorification of the Burau representation at prime roots of unity. Sel. Math. New Ser. 22, 1157–1193 (2016). https://doi.org/10.1007/s00029-015-0216-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0216-8

Keywords

Mathematics Subject Classification

Navigation