Skip to main content
Log in

Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 August 2019

This article has been updated

Abstract

In this paper, we consider a plate equation with a logarithmic nonlinearity in the presence of nonlinear frictional damping. Using the Galaerkin method, we establish the existence of solutions of the problem and we prove an explicit and general decay rate result, using the multiplier method and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 August 2019

    Due to an error in the typesetting process, reference [1] is incorrectly published in the original publication of the article.

  • 08 August 2019

    Due to an error in the typesetting process, reference [1] is incorrectly published in the original publication of the article.

References

  1. Han X., Wang M., General decay estimate of energy for the second order evaluation equation with memory, Acta Appl. Math. 110, 195–207 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, (1989)

    Book  Google Scholar 

  3. Barrow J. and Parsons P., Inflationary models with logarithmic potentials, Phys. Rev. D 52, 5576–5587 (1995).

    Article  Google Scholar 

  4. Benaissa A. and Mimouni S., Energy decay of solutions of a wave equation of \(p-\) Laplacian type with a weakly nonlinear dissipation, JIPM.J. Inequal. Pure Appl. Math. 7(1), Article 15, pp 8 (2006)

  5. Bartkowski K. and Gorka P., One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41(35), 355201, 11 pp. (2008)

  6. Bialynicki-Birula I. and Mycielski J., Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 23(4), 461–466 (1975).

    MathSciNet  Google Scholar 

  7. Bialynicki-Birula I. and Mycielski J., Nonlinear wave mechanics, Ann. Physics, 100(1–2), 62–93 (1976).

    Article  MathSciNet  Google Scholar 

  8. Cazenave T. and Haraux A., Equations d’evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse Math. 2(1), 21–51 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen H., Liu G., Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J.Pseudo-Differ. Oper. Appl. 3, 329–349 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen H., Luo P. and Liu G.W. , Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422, 84–98 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen W. and Zhou Y., Global nonexistence for a semilinear Petrovsky equation, Nonlinear Analysis A, vol. 70, no. 9, 3203–3208 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. Enqvist K. and McDonald J., Q-balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998), 309–321.

    Article  Google Scholar 

  13. Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations, 109, 295–308 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorka P., Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40(1), 59–66 (2009).

    MathSciNet  MATH  Google Scholar 

  15. Gorka P. , Prado H., and Reyes E. G., Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory 5, no. 1, 313–323 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. Gross L. , Logarithmic Sobolev inequalities, Amer. J. Math. 97(4), 1061–1083 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  17. Han X., Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics. Bull. Korean Math. Soc. 50(1), 275–283 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Han X., Wang M., General decay estimate of energy for the second order evalution equation with memory, Acta Appl. Math. 110, 195–207 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiramatsu T., Kawasaki M., and Takahashi F., Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, no. 6, 008 (2010).

  20. Ikehata R. and Suzuki T., Stable and unstable sets for evolution equation for parabolic and hyperbolic type.Hiroshima Mathematical Journal, 26, 475–491 (1996).

    MathSciNet  MATH  Google Scholar 

  21. Kalantarov V., Ladyzhenskaya O., The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math. 10, 53–70 (1978).

    Article  MATH  Google Scholar 

  22. Komornik V., Exact Controllability and Stabilization. The Multiplier Method. MassonWiley, Paris (1994)

    MATH  Google Scholar 

  23. Komornik V., Decay estimates for the wave equation with internal damping, International Series of Numerical Mathematics. 118, 253–266 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Komornik V., On the nonlinear boundary stabilization of Kirchoff Plates, NoDEA Nonlinear Differential Equations Appl. 1, 323–337 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. Komornik V. and Zuazua E., A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Lasiecka I., Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary. J. Differential Equations, 79, 340–381 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lagnese J., Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.

    Book  MATH  Google Scholar 

  28. Lasiecka I., Tataru D., Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (3) 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Lasiecka I., Exponential decay rates for the solutions of EulerBernoulli moments only, J. Differential Equations 95, 169–182 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, second Edition, Dunod, Paris (2002).

    MATH  Google Scholar 

  31. Liu Y. and Zhao J., On potential wells and applications to semilinear hyperbolic equations and parabolic equation. Nonlinear Analysis,64, 2665–2687 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. Marie-Therese Lacroix-Sonrier; Distrubutions Espace de Sobolev Application, Ellipses Edition Marketing S.A, (1998).

  33. Martinez P., A new method to decay rate estimates for dissipative systems. ESIM Control Optim. Cal. Var. 4, 419–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martinez P., A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12(1), 251–283 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Messaoudi S., Global existence and nonexistence in a system of Petrovsky, Journal of Mathematical Analysis and Applications, vol. 265, no. 2, 296–308 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakao M., Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (3), 403–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Payne L. and Sattinger D., Saddle points and instability of nonlinear hyperbolic equation, Israel Journal of Math. 226, 273–303 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  38. Santos M., junior F., A boundary condition with memory for Kirchoff plates equations, Appl. Math. Comput. 148, 475–496 (2004).

  39. Vladimirov V. S., The equation of the p-adic open string for the scalar tachyon field, Izv. Math. 69, no. 3, 487–512 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  40. Zuazua E., Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. P.D.E (15), 205–235 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Al-Gharabli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gharabli, M.M., Messaoudi, S.A. Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term. J. Evol. Equ. 18, 105–125 (2018). https://doi.org/10.1007/s00028-017-0392-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-017-0392-4

Navigation