Skip to main content
Log in

Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider nonlinear parabolic equations involving fractional diffusion of the form \({\partial_t u + {(-\Delta)}^{s} \Phi(u)= 0,}\) with \({0 < s < 1}\), and solve an open problem concerning the existence of solutions for very singular nonlinearities \({\Phi}\) in power form, precisely \({\Phi'(u)=c\,u^{-(n+1)}}\) for some \({0 < n < 1}\). We also include the logarithmic diffusion equation \({\partial_t u + {(-\Delta)}^{s} \log(u)= 0}\), which appears as the case \({n=0}\). We consider the Cauchy problem with nonnegative and integrable data \({u_0(x)}\) in one space dimension, since the same problem in higher dimensions admits no nontrivial solutions according to recent results of the author and collaborators. The limit solutions we construct are unique, conserve mass, and are in fact maximal solutions of the problem. We also construct self-similar solutions of Barenblatt type, which are used as a cornerstone in the existence theory, and we prove that they are asymptotic attractors (as \({t\to\infty}\)) of the solutions with general integrable data. A new comparison principle is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aleksandrov A. D.: Certain estimates for the Dirichlet problem. Soviet Math. Dokl. 1, 1151–1154 (1960)

    MathSciNet  MATH  Google Scholar 

  2. D. G. Aronson. The porous medium equation, CIME Lectures, In Some problems in nonlinear diffusion (K. Kirchgässner H. Amann, N. Bazely, editors), Lecture Notes in Mathematics 1224, Springer-Verlag, New York, 1986.

  3. C. Bandle. Isoperimetric inequalities and applications. Monographs and Studies in Mathematics, 7. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.

  4. P. Bénilan. Equations d’évolution dans un espace de Banach quelconque et applications, Ph. D. Thesis, Univ. Orsay, 1972 (in French).

  5. P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations. Contributions to Analysis and Geometry, (suppl. to Amer. Jour. Math.) Johns Hopkins Univ. Press, Baltimore, Md., 1981. pp. 23–39.

  6. Bonforte M., Figalli A.: Total variation flow and sign fast diffusion in one dimension. J. Differ. Eqns. 252, no. 8, 4455–4480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bonforte, A. Segatti, J. L. Vázquez. Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations, Calc. Var. PDES. doi:10.1007/s00526-016-1005-8.

  8. Bonforte M., Vázquez J. L.: Quantitative Local and Global A Priori Estimates for Fractional Nonlinear Diffusion Equations. Advances in Math. 250, 242–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bonforte, J. L. Vázquez. A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains. To appear in Arch. Rat. Mech. Anal. (2015). arXiv:1311.6997

  10. Caffarelli L.A., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli L. A., Vázquez J. L., Wolanski N. I.: Lipschitz continuity of solutions and interfaces of the \({N}\)-dimensional porous medium equation. Indiana Univ. Math. J. 36, no. 2, 373–401 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chasseigne E., Vázquez J.L.: Theory of Extended Solutions for Fast Diffusion Equations in Optimal Classes of Data. Radiation from Singularities. Archive Rat. Mech. Anal. 164, 133–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall M. G., Liggett T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daskalopoulos P., del Pino M. A.: On fast diffusion nonlinear heat equations and a related singular elliptic problem. Indiana Univ. Math. J. 43, no. 2, 703–728 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daskalopoulos P., del Pino M. A.: On a singular diffusion equation. Comm. Anal. Geom. 3, no. 3–4, 523–542 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daskalopoulos P., del Pino M. A.: On nonlinear parabolic equations of very fast diffusion. Arch. Rational Mech. Anal. 137, no. 4, 363–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Daskalopoulos, C. E. Kenig. Degenerate diffusions. Initial value problems and local regularity theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007.

  18. De Pablo A., Quirós F., Rodríguez A., Vázquez J. L.: A fractional porous medium equation. Advances in Mathematics 226, no. 2, 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Pablo A., Quirós F., Rodríguez A., Vázquez J. L.: A general fractional porous medium equation. Comm. Pure Appl. Math. 65, no. 9, 1242–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. de Pablo, F. Quirós, A. Rodríguez, and J. L. Vázquez. Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. 101 (2014), no. 6, 901–924.

  21. Esteban J. R., Rodríguez A., Vázquez J. L.: A nonlinear heat equation with singular diffusivity. Comm. Partial Diff. Eqs. 13, 985–1039 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herrero M. A.: A limit case in nonlinear diffusion. Nonlinear Anal. 13, no. 6, 611–628 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hui K. M.: Existence of solutions of the very fast diffusion equation. Nonlinear Anal. 58, no. 1–2, 75–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsu S.-Y.: Dynamics near extinction time of a singular diffusion equation. Math. Ann. 323, no. 2, 281–318 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Igbida N.: From fast to very fast diffusion in the nonlinear heat equation. Trans. Amer. Math. Soc. 361, no. 10, 5089–5109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim S., Lee K. A.: Hölder estimates for singular nonlocal parabolic equations. Journal of Functional Analysis, 261, 3482–3518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Portilheiro M., Vázquez J.L.: Degenerate homogeneous parabolic equations associated with the infinity-Laplacian. Calc. Var. PDE. 46, no. 3–4, 705–724 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodríguez A., Vázquez J. L.: A well-posed problem in singular Fickian diffusion. Archive Rat. Mech. Anal. 110, 2, 141–163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Rodríguez, J. L. Vázquez. Maximal solutions of singular diffusion equations with general initial data, Nonlinear Diffusion Equations and their Equilibrium States, 3, 7 Birkhuser Verlag, Boston (1992) p. 471484.

  30. Rodríguez A., Vázquez J. L., Esteban J. R.: The maximal solution of the logarithmic fast diffusion equation in two space dimensions. Adv. Differential Equations 2, no. 6, 867–894 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Rosenau Ph.: Fast and superfast diffusion processes. Physical Rev. Let. 74, 7, 1056–1059 (1995)

    Article  Google Scholar 

  32. Serrin J.: A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. L. Vázquez. Symétrisation pour \({u_t=\Delta\varphi(u)}\) et applications, C. R. Acad. Sc. Paris 295 (1982), pp. 71–74.

  34. J. L. Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), pp. 507–527.

  35. Vázquez J. L.: Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures. Appl. 71, 503–526 (1992)

    MathSciNet  MATH  Google Scholar 

  36. J. L. Vázquez. The Porous Medium Equation. New contractivity results. In Progress in Nonlinear Differential Equations and Their Applications, 63 (205) (Volume in honor of H. Brezis), pp. 433–451.

  37. Vázquez J. L.: Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic and related Elliptic Equations. Advances in Nonlinear Studies 5, 87–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. L. Vázquez. The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007).

  39. J. L. Vázquez. Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, 33. Oxford University Press, Oxford, 2006.

  40. J. L. Vázquez. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16 (2014), 769–803. MR3191976.

  41. Vazquez J. L., Esteban J. R., Rodríguez A.: The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane. Advances Diff. Eqns 1, 1, 21–50 (1996)

    MathSciNet  MATH  Google Scholar 

  42. J. L. Vázquez, A. de Pablo, F. Quirós, A. Rodríguez. Classical solutions and higher regularity for nonlinear fractional diffusion equations, to appear in J. Eur. Math. Soc. arXiv:1311.7427 (2013).

  43. Vázquez J. L., Volzone B.: Symmetrization for Linear and Nonlinear Fractional Parabolic Equations of Porous Medium Type. J. Math. Pures Appl. (9) 101, no. 5, 553–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vázquez J. L., Volzone B.: Optimal estimates for Fractional Fast diffusion equations. J. Math. Pures Appl. 103, 535–556 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Villani. Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, J.L. Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D. J. Evol. Equ. 16, 723–758 (2016). https://doi.org/10.1007/s00028-016-0340-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0340-8

Mathematics Subject Classification

Keywords

Navigation