Skip to main content
Log in

Convergence of conforming approximations for inviscid incompressible Bingham fluid flows and related problems

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study approximations by conforming methods of the solution to the variational inequality \({\langle \partial_t u,v-u\rangle + \psi(v) - \psi(u) \ge \langle f,v-u\rangle}\), which arises in the context of inviscid incompressible Bingham type fluid flows and of the total variation flow problem. In the general context of a convex lower semi-continuous functional \({\psi}\) on a Hilbert space, we prove the convergence of time implicit space conforming approximations, without viscosity and for nonsmooth data. Then, we introduce a general class of total variation functionals \({\psi}\), for which we can apply the regularization method. We consider the time implicit regularized, linearized or not, algorithms and prove their convergence for general total variation functionals. A comparison with an analytical solution concludes this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu F., Ballester C., Caselles V., Mazón J.M.: Minimizing total variation flow. Differential Integral Equations, 14(3), 321–360 (2001)

    MATH  MathSciNet  Google Scholar 

  2. V. Barbu. Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest, 1976. Translated from the Romanian.

  3. V. Barbu. Nonlinear differential equations of monotone types in Banach spaces. Springer Monographs in Mathematics. Springer, New York, 2010.

  4. F. Bouchut, D. Doyen, and R. Eymard. Convection and total variation flow. IMA J. Num. Anal., 2014.

  5. D. Bresch, E. D. Fernández-Nieto, I. R. Ionescu, and P. Vigneaux. Augmented Lagrangian method and compressible visco-plastic flows: applications to shallow dense avalanches. In New directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 57–89. Birkhäuser Verlag, Basel, 2010.

  6. H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).

  7. Crandall M.G., Liggett T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265–298 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc., 78(3), 385–390 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dean E.J., Glowinski R., Guidoboni G.: On the numerical simulation of bingham visco-plastic flow: Old and new results. J. Non-Newtonian Fluid Mech., 142(1), 36–62 (2007)

    Article  MATH  Google Scholar 

  10. Dobson D.C., Vogel C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal., 34(5), 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Droniou. Intégration et Espaces de Sobolev Valeurs Vectorielles. http://www.gm3.univ-mrs.fr/polys/gm3-02/index.html. Polycopié gm3-02 de l’Ecole Doctorale de Maths-Info, Marseille, 2001.

  12. G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag, Berlin, 1976. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219.

  13. H. Eberlein and M. Růžička. Existence of weak solutions for unsteady motions of Herschel-Bulkley fluids. J. Math. Fluid Mech. 14(3):485–500, 2012.

  14. R. Eymard, P. Féron, T. Gallouet, R. Herbin, and C. Guichard. Gradient schemes for the stefan problem. Int. J. Finite Vol., 10, 2013.

  15. X. Feng, A. Prohl, Analysis of total variation flow and its finite element approximations. M2AN Math. Model. Numer. Anal., 37(3): 533–556, 2003

  16. X. Feng, M. von Oehsen, and A. Prohl. Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math., 100(3):441–456, 2005.

  17. E. D. Fernández-Nieto, J. M. Gallardo, and P. Vigneaux. Efficient numerical schemes for viscoplastic avalanches. part 1: The 1D case. J. Comput. Phys., 264:55–90, 2014.

  18. M. Fuchs and G. Seregin. Variational methods for problems from plasticity theory and for generalized Newtonian fluids, volume 1749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.

  19. R. Glowinski, J.-L. Lions, and R. Trémolières. Numerical analysis of variational inequalities, volume 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1981. Translated from the French.

  20. R. Glowinski, J. Xu, and P. G. Ciarlet, editors. Handbook of numerical analysis. Vol. XVI. Special volume: Numerical Methods for Non-Newtonian Fluids, volume 16 of Handbook of Numerical Analysis. Elsevier/North-Holland, Amsterdam, 2011.

  21. E. Godlewski and P.-A. Raviart. Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris, 1991.

  22. I. R. Ionescu and M. Sofonea. Functional and numerical methods in viscoplasticity. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993.

  23. P.-Y. Lagrée, L. Staron, and S. Popinet. The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology. J. Fluid Mech., 686:378–408, 2011.

  24. J.-L. Lions. Remarks on some nonlinear evolution problems arising in Bingham flows. In Proceedings of the International Symposium on partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), volume 13, pages 155–172 (1973), 1972.

  25. C. Lusso. Modelling and simulation of granular flows with fluid/solid transition with the Drucker-Prager model. PhD thesis. Université Paris-Est, Champs-sur-Marne, 2013.

  26. J. M. Mazón. The total variation flow. In Proceedings of minisemester on evolution of interfaces, Technical Report 145, pages 163–210, 2010.

  27. C. Nouar and A. Bottaro. Stability of the flow of a Bingham fluid in a channel: eigenvalue sensitivity, minimal defects and scaling laws of transition. J. Fluid Mech., 642:349–372, 2010.

  28. R. Temam. Problèmes mathématiques en plasticité, volume 12 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eymard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchut, F., Eymard, R. & Prignet, A. Convergence of conforming approximations for inviscid incompressible Bingham fluid flows and related problems. J. Evol. Equ. 14, 635–669 (2014). https://doi.org/10.1007/s00028-014-0231-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0231-9

Keywords

Navigation