Skip to main content
Log in

L 2-theory for non-symmetric Ornstein–Uhlenbeck semigroups on domains

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove that the mild solution of the stochastic evolution equation \({{d}X(t) = AX(t)\,{d}t + {d}W(t)}\) on a Banach space E has a continuous modification if the associated Ornstein–Uhlenbeck semigroup is analytic on L 2 with respect to the invariant measure. This result is used to extend recent work of Da Prato and Lunardi for Ornstein–Uhlenbeck semigroups on domains \({\mathcal{O} \subseteq E}\) to the non-symmetric case. Denoting the generator of the Ornstein–Uhlenbeck semigroup by \({L_\mathcal{O}}\), we obtain sufficient conditions in order that the domain of \({\sqrt{-L_\mathcal{O}}}\) be a first-order Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Albrecht, X.T. Duong, and A. McIntosh, Operator theory and harmonic analysis, in: “Instructional Workshop on Analysis and Geometry, Part III” (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34, Austral. Nat. Univ., Canberra, 1996, pp. 77–136.

  2. P. Auscher, A. McIntosh, A. Nahmod, Holomorphic functional calculi of perturbed operators, quadratic estimates and interpolation, Indiana Univ. Math. J. 46, (1997), no. 2, 375–403.

    Google Scholar 

  3. A. Axelsson, S. Keith, A. McIntosh, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. 163 (2006), no. 3, 455–497.

  4. Z. Brzeźniak and J.M.A.M. van Neerven, Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem, Studia Math. 143 (2000), no. 1, 43–74.

  5. R. Carmona, Tensor product of Gaussian measures, in: “Vector Space Measures and Applications” (Dublin, 1977), II, Lecture Notes in Phys., Vol. 77, Springer-Verlag, Berlin-New York, 1978, pp. 96–124.

  6. A. Chojnowska-Michalik and B. Godys, Nonsymmetric Ornstein–Uhlenbeck semigroup as second quantized operator, J. Math. Kyoto Univ. 36, (1996), no. 3, 481–498.

    Google Scholar 

  7. A. Chojnowska-Michalik and B. Godys, Nonsymmetric Ornstein–Uhlenbeck generators, in: “Infinite Dimensional Stochastic Analysis” (Amsterdam, 1999), Royal. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 99–116.

  8. M.G. Cowling, Harmonic analysis on semigroups, Ann. of Math. (2) 117, (1983), no. 2, 267–283.

  9. G. Da Prato, B. Godys, J. Zabczyk, Ornstein–Uhlenbeck semigroups in open sets of Hilbert spaces, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 4, 433–438.

    Google Scholar 

  10. G. Da Prato, S. Kwapień, J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), no. 1, 1–23.

  11. G. Da Prato and A. Lunardi, On the Dirichlet semigroup for Ornstein–Uhlenbeck operators in subsets of Hilbert spaces, J. Funct. Anal. 259 (2010), no. 10, 2642–2672.

    Google Scholar 

  12. G. Da Prato and A. Lunardi, Maximal L 2 regularity for Dirichlet problems in Hilbert spaces, arXiv:1201.3809.

  13. Da Prato G., Zabczyk J.: “Stochastic Equations in Infinite Dimensions”, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  14. G. Da Prato and J. Zabczyk, “Second Order Partial Differential Equations in Hilbert Spaces”, London Mathematical Society Lecture Note Series, Vol. 293, Cambridge University Press, Cambridge, 2002.

  15. J.-D. Deuschel and D.W. Stroock, “Large Deviations”, Pure and Applied Mathematics, Vol. 137, Academic Press, Inc., Boston, MA, 1989.

  16. Engel K.J, Nagel R.: “A Short Course on Operator Semigroups”, Universitext. Springer Verlag, New York (2006)

    Google Scholar 

  17. X. Fernique, Fonctions aléatoires à à valeurs vectorielles, in: “Probability in Banach Spaces 6” (Sandbjerg, 1986), Progr. Probab., Vol. 20, Birkhäuser Verlag, Boston, MA, 1990, pp. 51–81.

  18. M. Fuhrman, Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, Studia Math. 115 (1995), no. 1, –71.

  19. B. Godys, On analyticity of Ornstein–Uhlenbeck semigroups, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), no. 3, 131–140.

  20. B. Godys, F. Gozzi and J.M.A.M van Neerven, On closability of directional gradients, Potential Anal. 18 (2003), no. 4, 289–310.

  21. Godys, Neerven J.M.A.M: Transition semigroups of Banach space valued Ornstein–Uhlenbeck processes. Acta Applicandae Math. 76, 283–330 (2003)

    Article  Google Scholar 

  22. M.H.A. Haase, “The Functional Calculus for Sectorial Operators”, Operator Theory: Advances and Applications, Vol. 169, Birkhäuser Verlag, Basel, 2006.

  23. I. Iscoe, M.B. Marcus, D. McDonald, M. Talagrand, J. Zinn, Continuity of l 2 -valued Ornstein–Uhlenbeck processes, Ann. Probab. 18 (1990), no. 1, 68–84.

  24. T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1980.

  25. P.C. Kunstmann and L. Weis, Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus, in: “Functional Analytic Methods for Evolution Equations”, Lecture Notes in Math., 1855, Springer, Berlin, 2004, pp. 65–311.

  26. J. Maas, J.M.A.M. van Neerven: On analytic Ornstein–Uhlenbeck semigroups in infinite dimensions, Arch. Math. 89, 226–236 (2007)

    Google Scholar 

  27. Maas J., van Neerven J.M.A.M: Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces. J Func. Anal. 257, 2410–2475 (2009)

    Article  MATH  Google Scholar 

  28. J. Maas and J.M.A.M. van Neerven, Gradient estimates and domain identification for analytic Ornstein–Uhlenbeck operators, in: “Parabolic Problems: The Herbert Amann Festschrift”, Progress in Nonlinear Differential Equations and Their Applications, Vol. 80, Birkhäuser Verlag, 2011, pp. 463–477.

  29. A. Millet and W. Smoleński, On the continuity of Ornstein–Uhlenbeck processes in infinite dimensions, Probab. Theory Related Fields 92 (1992), no. 4, 529–547.

    Google Scholar 

  30. van Neerven J.M.A.M: Nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces. J. Funct. Anal. 155, 495–535 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. van Neerven J.M.A.M., Weis L: Stochastic integration of functions with values in a Banach space. Studia Math. 166, 131–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. E.M. Ouhabaz: “Analysis of Heat Equations on Domains”, London Math Soc. Monogr. Ser. 31. Princeton University Press, Princeton,NJ (2005)

    Google Scholar 

  33. J. Rosiński, Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise, Colloq. Math. 43 (1980), no. 1, 183–201 (1981).

  34. W. Smoleński, Continuity of Ornstein–Uhlenbeck processes, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 203–206 (1990).

  35. A. Talarczyk, Dirichlet problem for parabolic equations on Hilbert spaces, Studia Math. 141 (2000), no. 2, 109–142.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Neerven.

Additional information

The second named author is supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assaad, J., van Neerven, J. L 2-theory for non-symmetric Ornstein–Uhlenbeck semigroups on domains. J. Evol. Equ. 13, 107–134 (2013). https://doi.org/10.1007/s00028-012-0171-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-012-0171-1

Mathematics Subject Classification (2000)

Keywords

Navigation