Skip to main content
Log in

Experimental assessment of a possible microbial priming effect in a humic boreal lake

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Global change models normally do not include interaction effects between different pools of recalcitrant humic organic carbon which can alter carbon cycling via their influence on biological activities. This issue is especially important in northern regions where lakes receive high inputs of allochthonous dissolved organic carbon (DOC) from the extensive surrounding peatlands. We investigated the threshold of added labile DOC necessary to promote a priming effect (PE); i.e. stimulation of bacterial metabolism with a subsequent increase in the mineralization of recalcitrant DOC and the accompanying changes in microbial community structure and function. Our study was carried out in a small highly humic lake (Mekkojärvi, southern Finland), physically divided by a plastic curtain into two experimental basins, one where fish were present (+FISH) and one that was fishless (−FISH). In each basin, we performed a factorial mesocosm experiment in which different amounts of labile DOC were supplied as cane sugar (control +6, +9, +12 mg C L−1). Our results showed no priming effect in any carbon treatment, either in +FISH or in −FISH basins, despite a decreasing trend in total DOC concentration. Bacterial abundance and production did not increase as a response to carbon additions, while mixotrophic algae increased their abundance over time. In our experiments, the organisms that benefitted most after addition of labile DOC were mixotrophic algae, which can transform carbon into biomass by obtaining inorganic nutrients through phagotrophy. This appears most likely due to strong bacterial N limitation and dependence on resource availability and stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Anesio AM, Granéli W, Aiken GR et al (2005) Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Appl Environ Microbiol 71:6267–6275. doi:10.1128/AEM.71.10.6267-6275.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bengtsson MM, Wagner K, Burns NR et al (2014) No evidence of aquatic priming effects in hyporheic zone microcosms. Sci Rep. doi:10.1038/srep05187

    PubMed  PubMed Central  Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci 108:19473–19481. doi:10.1073/pnas.1017982108

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi TS, Thornton DCO, Yvon-Lewis SA et al (2015) Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys Res Lett 42(13):5460–5467

    Article  CAS  Google Scholar 

  • Bingemann CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am Proc 17:34–38

    Article  Google Scholar 

  • Blomqvist P, Jansson M, Drakare S et al (2001) Effects of additions of doc on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microb Ecol 42:383–394. doi:10.1007/s002480000101

    Article  PubMed  CAS  Google Scholar 

  • Carlson CA, Giovannoni SJ, Hansell DA et al (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36

    Article  Google Scholar 

  • Catalán N, Kellerman AM, Peter H et al (2015) Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr 60:159–168. doi:10.1002/lno.10016

    Article  CAS  Google Scholar 

  • Currie DJ, Kalff J (1984) A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29:298–310

    Article  CAS  Google Scholar 

  • Danger M, Cornut J, Chauvet E et al (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613

    Article  PubMed  Google Scholar 

  • De Haan H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol Oceanogr 22:38–44

    Article  Google Scholar 

  • Einola E, Rantakari M, Kankaala P et al (2011) Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. Biogeosciences 116:G03009. doi:10.1029/2010JG001636

    Google Scholar 

  • Farjalla VF, Azevedo DA, Esteves FA et al (2006) Influence of hydrological pulse on bacterial growth and doc uptake in a clear-water Amazonian lake. Microb Ecol 52:334–344. doi:10.1007/s00248-006-9021-4

    Article  PubMed  Google Scholar 

  • Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009a) DOC removal paradigms in highly humic aquatic ecosystems. Environ Sci Pollut Res 16:531–538. doi:10.1007/s11356-009-0165-x

    Article  CAS  Google Scholar 

  • Farjalla VF, Marinho CC, Faria BM et al (2009b) Synergy of fresh and accumulated organic matter to bacterial growth. Microb Ecol 57:657–666. doi:10.1007/s00248-008-9466-8

    Article  PubMed  CAS  Google Scholar 

  • Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087. doi:10.1111/j.1461-0248.2005.00813.x

    Article  Google Scholar 

  • Fontes MLS, Tonetta D, Dalpaz L et al (2013) Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake. Front Microbiol. doi:10.3389/fmicb.2013.00071/abstract

    PubMed  PubMed Central  Google Scholar 

  • Gontikaki E, Thornton B, Huvenne VAI, Witte U (2013) Negative priming effect on organic matter mineralisation in NE Atlantic slope sediments. PLoS One 8:e67722. doi:10.1371/journal.pone.0067722.s001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    Article  Google Scholar 

  • Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  • Guenet B, Danger M, Harrault L et al (2014) Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721:35–44. doi:10.1007/s10750-013-1635-1

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013. Summary for policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  • Isaksson A, Bergström A-K, Blomqvist P, Jansson M (1999) Bacterial grazing by phagotrophic phytoflagellates in a deep humic lake in northern Sweden. J Plankton Res 21:247–268

    Article  Google Scholar 

  • Jansson M, Blomqvist P, Jonsson A, Bergström A-K (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol Oceanogr 41:1552–1559

    Article  CAS  Google Scholar 

  • Jones RI (1988) Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161:75–87

    Article  Google Scholar 

  • Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226

    Article  Google Scholar 

  • Kankaala P, Peura S, Nykänen H et al (2010a) Impacts of added dissolved organic carbon on boreal freshwater pelagic metabolism and food webs in mesocosm experiments. Fundam Appl Limnol 177:161–176. doi:10.1127/1863-9135/2010/0177-0161

    Article  CAS  Google Scholar 

  • Kankaala P, Taipale S, Li L, Jones RI (2010b) Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquat Ecol 44:781–795. doi:10.1007/s10452-010-9316-x

    Article  Google Scholar 

  • Karlsson J, Jansson M, Jonsson A (2002) Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes. Ecology 83:2902–2910

    Article  Google Scholar 

  • Kortelainen P (1993) Content of total organic carbon in finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50:1477–1483

    Article  CAS  Google Scholar 

  • Kortelainen P, Mattsson T, Finér L et al (2006) Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–468. doi:10.1007/s00027-006-0833-6

    Article  CAS  Google Scholar 

  • Kritzberg ES, Cole JJ, Pace MM, Granéli W (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38:103–111

    Article  Google Scholar 

  • Kritzberg ES, Granéli W, Björk J et al (2014) Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery. Freshw Biol 59:325–336. doi:10.1111/fwb.12267

    Article  CAS  Google Scholar 

  • Kuehn KA, Francoeur SN, Findlay RH, Neely RK (2014) Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95:749–762

    Article  PubMed  Google Scholar 

  • Kuuppo-Leinikki P, Salonen K (1992) Bacterioplankton in a small polyhumic lake with anoxic hypolimnion. Hydrobiologia 229:159–168

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Sci Soc Am Proc 32:1485–1498

    CAS  Google Scholar 

  • Lehtonen T, Peuravuori J, Pihlaja K (2000) Characterisation of lake-aquatic humic matter isolated with two different sorbing solid techniques: tetramethylammonium hydroxide treatment and pyrolysis-gas chromatography/mass spectrometry. Anal Chim Acta 424:91–103

    Article  CAS  Google Scholar 

  • Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:195–199

    Article  Google Scholar 

  • Moorhead D, Sinsabaugh R (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 151–174

  • Münster U, Tranvik LJ (1998) The role of microbial extracellular enzymes in the transformation of dissolved organic matter in humic waters. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances, ecological studies. Springer, Berlin, pp 199–257

    Chapter  Google Scholar 

  • Nugteren P, Moodley L, Brummer G-J et al (2009) Seafloor ecosystem functioning: the importance of organic matter priming. Mar Chem 156:2277–2287. doi:10.1007/s00227-009-1255-5

    Google Scholar 

  • Peura S, Eiler A, Hiltunen M et al (2012) Bacterial and phytoplankton responses to nutrient amendments in a boreal lake differ according to season and to taxonomic resolution. PLoS One 7:e38552. doi:10.1371/journal.pone.0038552.t004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peura S, Nykänen H, Kankaala P, Eiler A, Tiirola M, Jones RI (2014) Enhanced greenhouse gas emissions and changes in plankton communities following an experimental increase in organic carbon loading to a humic lake. Biogeochemistry 118:177–194

    Article  CAS  Google Scholar 

  • Reche I, Pulido-Villena E, Conde-Porcuna JM, Carrillo P (2001) Photoreactivity of dissolved organic matter from high-mountain lakes of Sierra Nevada, Spain. Arct Antarct Alp Res 33(4):426–434

    Article  Google Scholar 

  • Rier ST, Kuehn KA, Francoeur SN (2007) Algal regulation of extracellular enzyme in stream microbial communities associated with inert substrata and detritus. J N Am Benthol Soc 26:439–449

    Article  Google Scholar 

  • Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7:279–294

    Article  Google Scholar 

  • Rocker D, Kisand V, Scholz-Böttcher B et al (2012) Differential decomposition of humic acids by marine and estuarine bacterial communities at varying salinities. Biogeochemistry 111:331–346. doi:10.1007/s10533-011-9653-4

    Article  CAS  Google Scholar 

  • Rosenstock B, Simon M (2003) Consumption of dissolved amino acids and carbohydrates by limnetic bacterioplankton according to molecular weight fractions and proportions bound to humic matter. Microb Ecol 45:433–443. doi:10.1007/s00248-003-3001-8

    Article  PubMed  CAS  Google Scholar 

  • Roulet N, Moore TR (2006) Environmental chemistry: browning the waters. Nature 444:283–284. doi:10.1038/444283a

    Article  PubMed  CAS  Google Scholar 

  • Salonen K, Hammar K, Kuuppo P, Smolander U, Ojala A (2005) Robust parameters confirm predominance of heterotrophic processes in plankton of a highly humic pond. Hydrobiologia 543:181–189

    Article  Google Scholar 

  • Schindler DW, Schmidt R, Reid R (1972) Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J Fish Res Board Can 29(11):1627–1631

    Article  CAS  Google Scholar 

  • Taipale S, Kankaala P, Jones RI (2007) Contributions of different organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI13C-additions. Ecosystems 10:757–772. doi:10.1007/s10021-007-9056-5

    Article  CAS  Google Scholar 

  • Taipale S, Kankaala P, Tiirola M, Jones RI (2008) Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89:463–474

    Article  PubMed  Google Scholar 

  • Tikkanen T (1986) Kasviplanktonopas. Suomen Luonnonsuojelun Tuki Oy, Helsinki

    Google Scholar 

  • Tittel J, Wiehle I, Wannicke N et al (2009) Utilisation of terrestrial carbon by osmotrophic algae. Aquat Sci 71:46–54. doi:10.1007/s00027-008-8121-2

    Article  CAS  Google Scholar 

  • Tulonen T (1993) Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microb Ecol 26(3):201–217

    Article  PubMed  CAS  Google Scholar 

  • Turnewitsch R, Domeyer B, Graf G (2007) Experimental evidence for an effect of early-diagenetic interaction between labile and refractory marine sedimentary organic matter on nitrogen dynamics. J Sea Res 57:270–280. doi:10.1016/j.seares.2006.08.001

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Limnol 9:1–38

    Google Scholar 

  • Vrede K, Heldal M, Norland S et al (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl Environ Microb 68:2965–2971

    Article  CAS  Google Scholar 

  • Vuorenmaa J, Forsius M, Mannio J (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci Total Environ 365:47–65. doi:10.1016/j.scitotenv.2006.02.038

    Article  PubMed  CAS  Google Scholar 

  • Zubkov MV, Burkill PH (2006) Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytom A 69A:1010–1019. doi:10.1002/cyto.a.20332

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Lammi Biological Station, University of Helsinki for the facilities available and all personnel assisting with the experiment. We specially thank Jussi Vesterinen for his invaluable help during the sampling period. We thank Dr. Michael Wilkins and an anonymous reviewer for their constructive criticism and suggestions. The study was supported by Academy of Finland Project 137671 awarded to RIJ and by Junta de Andalucía Project P09-RNM-5376 to JMMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Dorado-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorado-García, I., Syväranta, J., Devlin, S.P. et al. Experimental assessment of a possible microbial priming effect in a humic boreal lake. Aquat Sci 78, 191–202 (2016). https://doi.org/10.1007/s00027-015-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0425-4

Keywords

Navigation