Skip to main content
Log in

Redox gradients at the low oxygen boundary of lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The distribution of oxygen (O2) at the oxic/anoxic interface in the water column of two Swiss lakes was measured with sub-micromolar sensitivity, high precision, and high spatial resolution. The O2 distribution was found to be highly variable and it is shown that N-cycling and the redox gradients of Mn, Fe and CH4 are controlled by O2 distributions down to the nanomolar concentration range. The profiles reveal that apparent gaps between the oxic zone and the sites of CH4 and Mn oxidation are bridged by zones with 0.01−1 µmol L–1 O2 concentrations and thus CH4 and Mn oxidation clearly occur at oxic conditions. Directly below the steep oxycline of Lake Rot a broad low O2 zone in the depth range of 6−7.5 m was now detectable. The O2 increase during daylight in this zone was comparable to the O2 flux along the oxycline. Here photosynthesis could be responsible for a substantial part of the chemotrophic oxidation processes. An even broader zone (0.8−3.8 m) with sub-micromolar O2 and evidence for methanotrophic and lithotrophic activities found at 160 m depth in the deep, dark hypolimnion of Lake Zug was maintained by transport, reaction- and mixing processes. The submicromolar zones could not have been resolved with traditional CTD-profiles. Their existence expands the oxic zone downwards and implies that substantial parts of “suboxic zones” characterized by the absence of both O2 and H2S may actually belong to the realm of oxic processes if more sensitive measurement techniques are used for their characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in fresh-water and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632. doi:10.4319/lo.1984.29.3.0620

    Article  CAS  Google Scholar 

  • Berg P, Røy H, Janssen F, Meyer V, Jørgensen BB, Huettel M, de Beer D (2003) Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar Ecol Prog Ser 261:75–83. doi:10.3354/Meps261075

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51(2):359–365. doi:10.1306/212F7C7F-2B24-11D7-8648000102C1865D

    CAS  Google Scholar 

  • Bethke CM, Sanford RA, Kirk MF, Jin QS, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210. doi:10.2475/03.2011.01

    Article  CAS  Google Scholar 

  • Bonin P, Gilewicz M, Bertrand JC (1989) Effects of oxygen on each step of denitrification on Pseudomonas nautica. Can J Microbiol 35(11):1061–1064

    Article  CAS  Google Scholar 

  • Brand A, McGinnis DF, Wehrli B, Wüest A (2008) Intermittent oxygen flux from the interior into the bottom boundary of lakes as observed by eddy correlation. Limnol Oceanogr 53(5):1997–2006. doi:10.4319/lo.2008.53.5.1997

    Article  CAS  Google Scholar 

  • Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7(4):385–392. doi:10.1111/j.1472-4669.2009.00214.x

    Article  CAS  PubMed  Google Scholar 

  • Clement BG, Luther GW III, Tebo BM (2009) Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim Cosmochim Ac 73(7):1878–1889. doi:10.1016/j.gca.2008.12.023

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • DEV (2004) Deutsche einheitsverfahren zur wasser-abwasser- und schlammuntersuchung. Wiley, Weinheim

    Google Scholar 

  • Garcia HE, Gordon LI (1992) Oxygen solubility in seawater—better fitting equations. Limnol Oceanogr 37(6):1307–1312. doi:10.4319/lo.1992.37.6.1307

    Article  CAS  Google Scholar 

  • Goudsmit GH, Peeters F, Gloor M, Wüest A (1997) Boundary versus internal diapycnal mixing in stratified natural waters. J Geophys Res Oceans 102(C13):27903–27914. doi:10.1029/97JC01861

    Article  Google Scholar 

  • Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279

    Article  Google Scholar 

  • Jones C, Crowe SA, Sturm A, Leslie KL, MacLean LCW, Katsev S, Henny C, Fowle DA, Canfield DE (2011) Biogeochemistry of manganese in ferruginous Lake Matano. Indonesia Biogeosciences 8(10):2977–2991. doi:10.5194/bg-8-2977-2011

    Article  CAS  Google Scholar 

  • Kalvelage T, Jensen MM, Contreras S, Revsbech NP, Lam P, Gunter M, LaRoche J, Lavik G, Kuypers MMM (2011) Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. Plos One 6(12):e29299. doi:10.1371/journal.pone.0029299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling RF, Kortzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. doi:10.1146/annurev.marine.010908.163855

    Article  Google Scholar 

  • Kirf MK, Dinkel C, Schubert C, Wehrli B (2013) Submicromolar oxygen profiles at the oxic–anoxic boundary of temperate lakes. Aquat Geochem 1−19. doi:10.1007/s10498-013-9206-7

  • Kohler HP, Ahring B, Albella C (1984) Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microbiol Lett 21(3):279–286. doi:10.1111/j.1574-6968.1984.tb00322.x

    CAS  Google Scholar 

  • Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, Oguz T, Glazer B, Trouwborst RE, Clement B, Murray KJ, Romanov AS (2003) Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 48(6):2369–2376

    Article  CAS  Google Scholar 

  • Kreling J, Bravidor J, McGinnis DF, Koschorreck M, Lorke A (2014) Physical controls of oxygen fluxes at pelagic and benthic oxyclines in a lake. Limnol Oceanogr 59(5):1637–1650. doi:10.4319/lo.2014.59.5.1637

  • Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345. doi:10.1146/annurev-marine-120709-142814

    Article  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. P Natl Acad Sci USA 104(17):7104–7109

    Article  CAS  Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266):529–531. doi:10.1038/344529a0

    Article  CAS  Google Scholar 

  • Lehner P, Staudinger C, Borisov SM, Klimant I (2014) Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat Commun 5. doi:10.1038/ncomms5460  

  • Lippitsch ME, Pusterhofer J, Leiner MJP, Wolfbeis OS (1988) Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205(1–2):1–6. doi:10.1016/S0003-2670(00)82310-7

    Article  CAS  Google Scholar 

  • Lorke A, Müller B, Maerki M, Wüest A (2003) Breathing sediments: the control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnol Oceanogr 48(6):2077–2085. doi:10.4319/lo.2003.48.6.2077

    Article  Google Scholar 

  • Maerki M, Müller B, Dinkel C, Wehrli B (2009) Mineralization pathways in lake sediments with different oxygen and organic carbon supply. Limnol Oceanogr 54(2):428–438. doi:10.4319/lo.2009.54.2.0428

    Article  CAS  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–184. doi:10.1111/j.1574-6941.1995.tb00281.x

    Article  CAS  Google Scholar 

  • Müller B, Bryant LD, Matzinger A, Wüest A (2012) Hypolimnetic oxygen depletion in eutrophic lakes. Environ Sci Technol 46(18):9964–9971. doi:10.1021/es301422r

    PubMed  Google Scholar 

  • Peeters F, Wüest A, Piepke G, Imboden DM (1996) Horizontal mixing in lakes. J Geophys Res Oceans 101(C8):18361–18375. doi:10.1029/96JC01145

    Article  Google Scholar 

  • Revsbech NP, Larsen LH, Gundersen J, Dalsgaard T, Ulloa O, Thamdrup B (2009) Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol Oceanogr Methods 7:371–381. doi:10.4319/lom.2009.7.371

    Article  CAS  Google Scholar 

  • Schippers A, Neretin LN, Lavik G, Leipe T, Pollehne F (2005) Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea. Geochim Cosmochim Ac 69(9):2241–2252. doi:10.1016/j.gca.2004.10.016

    Article  CAS  Google Scholar 

  • Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72(4):455–466. doi:10.1007/s00027-010-0148-5

    Article  CAS  Google Scholar 

  • Seitzinger SP, Nixon SW, Pilson MEQ (1984) Denitrification and nitrous-oxide production in a coastal marine ecosystem. Limnol Oceanogr 29(1):73–83

    Article  CAS  Google Scholar 

  • Stolper DA, Revsbech NP, Canfield DE (2010) Aerobic growth at nanomolar oxygen concentrations. P Natl Acad Sci USA 107(44):18755–18760. doi:10.1073/pnas.1013435107

    Article  CAS  Google Scholar 

  • Stumm W, Morgan J (1995) Aquatic chemistry: Chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, New York, USA

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Pl Sc 32:287–328. doi:10.1146/annurev.earth.32.101802.120213

    Article  CAS  Google Scholar 

  • Thamdrup B, Dalsgaard T, Revsbech NP (2012) Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep Sea Res Part I 65:36–45. doi:10.1016/j.dsr.2012.03.001

    Article  CAS  Google Scholar 

  • Tilzer MM (1988) Secchi disk—chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia 162(2):163–171

    Article  CAS  Google Scholar 

  • Verbruggen F, Heiri O, Reichart GJ, Lotter AF (2010) Chironomid δ18O as a proxy for past lake water δ18O: a lateglacial record from Rotsee (Switzerland). Quaternary Sci Rev 29(17–18):2271–2279. doi:10.1016/j.quascirev.2010.05.030

    Article  Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous-oxide solubility in water and seawater. Mar Chem 8(4):347–359

    Article  CAS  Google Scholar 

  • Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon-monoxide, and hydrogen in water and sea-water. J Chem Eng Data 24(4):356–360

    Article  CAS  Google Scholar 

  • Wild D, von Schulthess R, Gujer W (1995) Structured modeling of denitrification intermediates. Water Sci Technol 31(2):45–54. doi:10.1016/0273-1223(95)00179-Q

    Article  CAS  Google Scholar 

  • Winkler LW (1888) Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber Dtsch Chem Ges 21(2):2843–2854. doi:10.1002/cber.188802102122

    Article  Google Scholar 

  • Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10(6):381–394. doi:10.1038/Nrmicro2778

    CAS  PubMed  Google Scholar 

  • Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412. doi:10.1146/annurev.fluid.35.101101.161220

    Article  Google Scholar 

  • Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem 74(1):29–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eric Epping and Volker Meyer for valuable ideas supporting the measuring setup. We thank Dörte Carstens, Manuel Kunz, Gianna Battaglia, Christian Dinkel, Gijs Nobbe, Enoma Omoregie, Ruth Stierli and Alois Zwyssig for help in the laboratory and in the field and the cantonal agency Lucerne Environment and Energy for provided Secchi-data. Johny Wüest and Britta Bohnenbuck are acknowledged for comments on the text. The project was funded by Eawag and benefitted from the interaction with team members of the EU-project “Hypox” (EC grant # 22613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias K. Kirf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

27_2014_365_MOESM1_ESM.doc

Location of Lake Rot and Lake Zug in Switzerland (middle left). Bathymetric map of Lake Zug (right) and Lake Rot (bottom). Crosses in the deepest parts indicate the sampling-areas. Modified after Verbruggen et al. (2010) (DOC 298 kb)

Characteristics of the individual casts taken in Lake Rot and Lake Zug (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirf, M.K., Røy, H., Holtappels, M. et al. Redox gradients at the low oxygen boundary of lakes. Aquat Sci 77, 81–93 (2015). https://doi.org/10.1007/s00027-014-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0365-4

Keywords

Navigation