Skip to main content
Log in

On Linear Configurations in Subsets of Compact Abelian Groups, and Invariant Measurable Hypergraphs

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We prove an arithmetic removal result for all compact abelian groups, generalizing a finitary removal result of Král’, Serra, and the third author. To this end, we consider infinite measurable hypergraphs that are invariant under certain group actions, and for these hypergraphs we prove a symmetry-preserving removal lemma, which extends a finitary result of the same name by the second author. We deduce our arithmetic removal result by applying this lemma to a specific type of invariant measurable hypergraph. As a direct consequence of our removal result, we obtain the following generalization of Szemerédi’s theorem: for any compact abelian group G, any measurable set \({A \subseteq G}\) with Haar probability \({\mu(A) \geq \alpha > 0}\) satisfies \({\int_{G}\int_{G}1_{A}(x)1_{A}(x+r)...1_{A}(x+(k-1)r)\, {\rm d} \mu(x)\, {\rm d} \mu(r) \geq c}\), where the constant \({c=c(\alpha, k) > 0}\) is valid uniformly for all G. This result is shown to hold more generally for any translationinvariant system of r linear equations given by an integer matrix with coprime \({r \times r}\) minors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom, T.: A quantitative improvement for Roth’s theorem on arithmetic progressions. Preprint. arXiv:1405.5800

  2. Bogachev V.I.: Measure Theory, Vol. II. Springer-Verlag, Berlin (2007)

    Book  MATH  Google Scholar 

  3. Candela, P.: Developments at the interface between combinatorics and fourier analysis. PhD thesis. University of Cambridge, Cambridge (2009)

  4. Candela P., Sisask O.: On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime. Acta Math. Hungar. 132(3), 223–243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candela P., Sisask O.: A removal lemma for linear configurations in subsets of the circle. Proc. Edinburgh Math. Soc. (2) 56((3), 657–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conlon, D., Fox, J.: Graph removal lemmas. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, pp. 1–49. Cambridge University Press, Cambridge (2013)

  7. Deitmar A., Echterhoff S.: Principles of Harmonic Analysis. Springer-Verlag, New York (2009)

    MATH  Google Scholar 

  8. Gowers W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gowers W.T.: Quasirandom groups. Combin. Probab. Comput. 17(3), 363–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green B.: A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15(2), 340–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, B., Tao, T.: An arithmetic regularity lemma, an associated counting lemma, and applications. In: Bárány, I., Solymosi, J. (eds.) An Irregular Mind. Bolyai Soc. Math. Stud., Vol. 21, pp. 261–334. János Bolyai Mathematical Society, Budapest (2010)

  12. Green, B., Tao, T.: New bounds for Szemerédi’s theorem. II: a new bound for \({r_{4}(N)}\). In: Chen, W.W.L., Gowers, W.T., Halberstam, H., Schmidt, W.M., Vaughan, R.C. (eds.) Analytic Number Theory, pp. 180–204. Cambridge Univ. Press, Cambridge (2009)

  13. Hewitt E., Ross K.: Abstract Harmonic Analysis. Vol. 1, second edition. Springer-Verlag, New York (1979)

    MATH  Google Scholar 

  14. Hofmann, K.H., Morris, S.A.: The Structure of Compact Groups. De Gruyter Studies in Mathematics Vol. 25. Walter de Gruyter & Co., Berlin (1998)

  15. Kechris, A.S.: Classical Descriptive Set Theory. Grad. Texts in Math., Vol. 156. Springer- Verlag, New York (1995)

  16. Král’ D., Serra O., Vena L.: A combinatorial proof of the removal lemma for groups. J. Combin. Theory Ser. A 116(4), 971–978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Král’ D., Serra O., Vena L.: A removal lemma for systems of linear equations over finite fields. Israel J. Math. 187(1), 193–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Král’ D., Serra O., Vena L.: On the removal lemma for linear systems over abelian groups. European J. Combin. 34(2), 248–259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Newman M.: Integral Matrices. Pure Appl. Math., Vol. 45. Academic Press, New York (1972)

    Google Scholar 

  20. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  21. Rudin W.: Fourier Analysis on Groups. Wiley, New York-London (1962)

    MATH  Google Scholar 

  22. Ruzsa I.Z.: Solving a linear equation in a set of integers II. Acta Arith. 72, 385–397 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Ruzsa, I.Z., Szemerédi, E.: Triple systems with no six points carrying three triangles. In: Hajnal, A., Sós, V.T. (ed.) Combinatorics, Vol. II. Colloq. Math. Soc. János Bolyai, Vol. 18, pp. 939–945. North-Holland, Amsterdam-New York (1978)

  24. Sanders T.: On Roth’s theorem on progressions. Ann. of Math. (2) 174(1), 619–636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saxton D., Thomason A.: Hypergraph containers. Invent. Math. 201(3), 925–992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serra O., Vena L.: On the number of monochromatic solutions of integer linear systems on abelian groups. European J. Combin. 35, 459–473 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shapira A.: A proof of Green’s conjecture regarding the removal properties of sets of linear equations. J. London Math. Soc. (2) 81(2), 355–373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szemerédi E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27(1), 199–245 (1975)

    MathSciNet  MATH  Google Scholar 

  29. Szegedy B.: The symmetry preserving removal lemma. Proc. Amer. Math. Soc. 138(2), 405–408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao T.: A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113(7), 1257–1280 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T.: A proof of Roth’s theorem. Blog post, avaible on-line at: http://terrytao.wordpress.com/2014/04/24/a-proof-of-roths-theorem

  32. Varadarajan V.S.: Groups of automorphisms of Borel spaces. Trans. Amer. Math. Soc. 109(2), 191–220 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vena, L.: The removal lemma for products of systems. In: Rytíř, P. (ed.)Midsummer Combinatorial Workshop 2012, pp. 42–44. KAM-DIMATIA Series, Praha (2013) Available on-line at: http://kam.mff.cuni.cz/workshops/work18/mcw2012booklet.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Candela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candela, P., Szegedy, B. & Vena, L. On Linear Configurations in Subsets of Compact Abelian Groups, and Invariant Measurable Hypergraphs. Ann. Comb. 20, 487–524 (2016). https://doi.org/10.1007/s00026-016-0313-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-016-0313-1

Mathematics Subject Classification

Keywords

Navigation