Skip to main content
Log in

Existence and Concentration of Solutions for the Chern–Simons–Schrödinger System with General Nonlinearity

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the nonlinear Chern–Simons–Schrödinger system with an external potential. Under some suitable conditions on the potential and nonlinearity, we prove the existence, multiplicity and concentration of solutions by using variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergé L., de Bouard A., Saut J.C.: Blowing up time-dependent solutions of the planar Chern–Simons gauged nonlinear Schrödinger equation. Nonlinearity 8, 235–253 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byeon J., Huh H., Seok J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern–Simons–Schrödinger equations. J. Differ. Equ. (2016). doi:10.1016/j.jde.2016.04.004

  4. Berestycki H., Lions P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Wang Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}^{N}}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch T., Pankov A., Wang Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cunha P.L., d’Avenia P., Pomponio A., Siciliano G.: A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differ. Equ. Appl. 22, 1831–1850 (2015)

    Article  MATH  Google Scholar 

  8. Dunne V.: Self-Dual Chern–Simons Theories. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  9. Huh H.: Blow-up solutions of the Chern–Simons–Schrödinger equations. Nonlinearity 22, 967–974 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huh H.: Standing waves of the Schrödinger equation coupled with the Chern–Simons gauge field. J. Math. Phys. 53, 063702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huh, H.: Energy solution to the Chern–Simons–Schrödinger equations. Abstr. Appl. Anal., Article ID 590653 (2013)

  12. Jackiw R., Pi S.Y.: Soliton solutions to the gauged nonlinear Schrödinger equations. Phys. Rev. Lett. 64, 2969–2972 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jackiw R., Pi S.Y.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  14. Jackiw R., Pi S.Y.: Self-dual Chern–Simons solitons. Prog. Theor. Phys. Suppl. 107, 1–40 (1992)

    Article  MATH  Google Scholar 

  15. Jiang, Y., Pomponio, A., Ruiz, D.: Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun. Contemp. Math. doi:10.1142/S0219199715500741

  16. Liu, B., Smith, P.: Global wellposedness of the equivariant Chern–Simons–Schrödinger equation (preprint). arXiv:1312.5567

  17. Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern–Simons–Schrödinger. Int. Math. Res. Notices. doi:10.1093/imrn/rnt161

  18. Pomponio A., Ruiz D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 1463–1486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pomponio A., Ruiz D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial Differ. Equ. 53, 289–316 (2015)

    Article  MATH  Google Scholar 

  20. Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. in Math., vol. 65. Amer. Math. Soc., Providence (1986)

  22. Wan Y.Y., Tan J.G.: Standing waves for the Chern–Simons–Schrödinger systems without (AR) condition. J. Math. Anal. Appl. 415, 422–434 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Willem M.: Minimax Theorems. Birkhäuser, Berlin (1996)

    Book  MATH  Google Scholar 

  24. Zhang J., Tang X.H., Zhang W.: Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential. J. Math. Anal. Appl. 420, 1762–1775 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang J., Tang X.H., Zhang W.: Existence of infinitely many solutions for a quasilinear elliptic equation. Appl. Math. Lett. 37, 131–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J., Tang, X.H., Zhang, W.: High energy solutions for the nonlinear Chern–Simons–Schrödinger system (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

This work is partially supported by the NNSF (Nos. 11571370, 11471137, 11471278, 61472136).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Zhang, J. & Zhang, W. Existence and Concentration of Solutions for the Chern–Simons–Schrödinger System with General Nonlinearity. Results Math 71, 643–655 (2017). https://doi.org/10.1007/s00025-016-0553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-016-0553-8

Mathematics Subject Classification

Keywords

Navigation