Skip to main content
Log in

Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace–Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace–Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baeten, G., de Maag, J. W., Plessix, R. E., Klaassen, R., Qureshi, T., Kleemeyer, M., et al. (2013). The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting, 61, 701–711.

    Article  Google Scholar 

  • Biondi, B., & Sava, P. (1999). Wave-equation migration velocity analysis. In 69th SEG Annual Meeting Expanded Abstract (pp. 1723–1726).

  • Brenders, A. J., & Pratt, R. G. (2007). Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model. Geophysical Journal International, 168, 133–151.

    Article  Google Scholar 

  • Brossier, R. (2011). Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance. Computers & Geosciences, 37, 444–455.

    Article  Google Scholar 

  • Bunks, C., Saleck, F., Zaleski, S., & Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics, 60, 1457–1473.

    Article  Google Scholar 

  • Chen, G., Chen, S., & Wu, R., S. (2015). Full waveform inversion in time domain using time-damping filters. In SEG Technical Program Expanded Abstracts (pp. 1451–1455).

  • Chung, W., Shin, C., & Pyun, S. (2010). 2D elastic waveform inversion in the Laplace domain. Bulletin of the Seismological Society of America, 100, 3239–3249.

    Article  Google Scholar 

  • Ha, W., Cha, Y., & Shin, C. (2010). A comparison between Laplace domain and frequency domain methods for inverting seismic waveforms. Exploration Geophysics, 41, 189–197.

    Article  Google Scholar 

  • Jun, H., Kim, Y., Shin, J., Shin, C., & Min, D. J. (2014). Laplace–Fourier-domain elastic full-waveform inversion using time-domain modeling. Geophysics, 79, 231–248.

    Article  Google Scholar 

  • Köhn, D. (2011). Time domain 2D elastic full waveform tomography. PhD thesis, Kiel University.

  • Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A., & Bohlen, T. (2012). On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International, 191, 325–345.

    Article  Google Scholar 

  • Komatitsch, D., & Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72, SM155–SM167.

    Article  Google Scholar 

  • Kurzmann, A. (2012). Applications of 2D and 3D full waveform tomography in acoustic and viscoacoustic complex media. Ph.D. thesis, Karlsruhe Institute of Technology (KIT).

  • Lin, Y., & Huang, L. (2014). Acoustic- and elastic-waveform inversion using a modified total-variation regularization scheme. Geophysical Journal International, 200, 489–502.

    Article  Google Scholar 

  • Luo, Y., Ma, Y., Wu, Y., Liu, H., & Cao, L. (2016). Full-traveltime inversion. Geophysics, 81, R261–R274.

    Article  Google Scholar 

  • Luo, Y., & Schuster, G. T. (1991). Wave-equation traveltime inversion. Geophysics, 56, 645–653.

    Article  Google Scholar 

  • Luo, J., & Wu, R., S. (2013). Envelope inversion—some application issues. In 83th SEG Annual Meeting Expanded Abstract (pp. 1042–1047).

  • Ma, Y., & Hale, D. (2013). Wave-equation reflection traveltime inversion with dynamic warping and hybrid waveform inversion. In 83th SEG Annual Meeting Expanded Abstract (pp. 871–876).

  • Operto, S., Miniussi, A., Brossier, R., Combe, L., Métivier, L., Monteiller, V., et al. (2015). Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: Application to Valhall in the visco-acoustic vertical transverse isotropic approximation. Geophysical Journal International, 202, 1362–1391.

    Article  Google Scholar 

  • Plessix, R. E., & Mulder, W. A. (2004). Frequency-domain finite-difference amplitude-preserving migration. Geophysical Journal International, 157, 975–987.

    Article  Google Scholar 

  • Pratt, R. (1990). Inverse theory applied to multi-source cross-hole tomography. Part II: Elastic wave-equation method. Geophysical Prospecting, 38, 311–329.

    Article  Google Scholar 

  • Pratt, R. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics, 64, 888–901.

    Article  Google Scholar 

  • Pratt, R. G., Song, Z. M., Williamson, P., & Warner, M. (1996). Two dimensional velocity models from wide-angle seismic data by wavefield inversion. Geophysical Journal International, 124, 323–340.

    Article  Google Scholar 

  • Pratt, R., & Worthington, M. (1990). Inverse theory applied to multi-source cross-hole tomography. Part I: Acoustic wave equation method. Geophysical Prospecting, 38, 287–310.

    Article  Google Scholar 

  • Shen, P., & Symes, W. (2008). Automatic velocity analysis via shot profile migration. Geophysics, 73, VE49–VE59.

    Article  Google Scholar 

  • Shin, C., & Cha, Y. H. (2008). Waveform inversion in the Laplace domain. Geophysical Journal International, 173, 922–931.

    Article  Google Scholar 

  • Shin, C., & Cha, Y. H. (2009). Waveform inversion in the Laplace–Fourier domain. Geophysical Journal International, 177, 1067–1079.

    Article  Google Scholar 

  • Sirgue, L., Etgen, J., & Albertin, U. (2008). 3D frequency domain waveform inversion using time domain finite difference methods. In 70th EAGE Annual Meeting Expanded Abstract.

  • Sirgue, L., & Pratt, R. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69, 231–248.

    Article  Google Scholar 

  • Sourbier, F., Operto, S., Virieux, J., Amestoy, P., & L’Excellent, J. (2009a). FWT2D: A massively parallel program for frequency domain full-waveform tomography of wide-aperture seismic data—part 1: Algorithm. Computer & Geosciences, 35, 487–496.

    Article  Google Scholar 

  • Sourbier, F., Operto, S., Virieux, J., Amestoy, P., & L’Excellent, J. (2009b). FWT2D: A massively parallel program for frequency domain full-waveform tomography of wide-aperture seismic data—part 2: Numerical examples and scalability analysis. Computer & Geosciences, 35, 496–514.

    Article  Google Scholar 

  • Tarantola, A. (1984a). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.

    Article  Google Scholar 

  • Tarantola, A. (1984b). Linearized inversion of seismic reflection data. Geophysical Prospecting, 32, 998–1015.

    Article  Google Scholar 

  • Tarantola, A. (1986). A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51, 1893–1903.

    Article  Google Scholar 

  • Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics, 128, 365–399.

    Article  Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and model parameter estimation. Philadelphia: SIAM.

    Book  Google Scholar 

  • Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74, WCC1–WCC26.

    Article  Google Scholar 

  • Wu, R. S., Luo, J., & Wu, B. (2013). Seismic envelope inversion and modulation signal model. Geophysics, 79, WA13–WA24.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Köhn. D. and the anonymous reviewers for their thoughtful suggestions. This research was supported by Elastic Wave Seismic Imaging Technology Cooperation R & D Project of China National Petroleum Corporation, Major State Research Development Program of China (Grant No. 2016YFC0601101), the Project of National Natural Science Foundation of China (Grant Nos. 41574117 and 41474118), Heilongjiang Province Natural Science Fund for Distinguished Young Scholar (Grant No. JC2016006), and the Open Project of State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology (Grant No. LP1509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebao Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Liu, H., Shi, Y. et al. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion. Pure Appl. Geophys. 174, 1303–1314 (2017). https://doi.org/10.1007/s00024-016-1462-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1462-1

Keywords

Navigation