Skip to main content
Log in

Regularized Laplace–Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace–Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace–Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace–Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace–Fourier-domain FWI. Because the Laplace–Fourier-domain FWI is improved, the frequency-domain FWI, in which the Laplace–Fourier-domain FWI result is used as the starting model, yields inversion result much closer to the true velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Amundsen, L., & Ursin, B. (1991). Frequency-wavenumber inversion of acoustic data. Geophysics, 56, 1027–1039.

    Article  Google Scholar 

  • Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P., & Virieux, J. (2013). Regularized seismic full waveform inversion with prior model information. Geophysics, 78, R25–R36.

    Article  Google Scholar 

  • Backus, G., & Gilbert, F. (1967). Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society, 13, 247–276.

    Article  Google Scholar 

  • Backus, G., & Gilbert, F. (1968). The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169–205.

    Article  Google Scholar 

  • Backus, G., & Gilbert, F. (1970). Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions of the Royal Society of London, Series A, 266, 123–192.

    Article  Google Scholar 

  • Blacic, T. M., Jun, H., Rosado, H., & Shin, C. (2016). Smoothe 2-D ocean sound speed from Laplace and Laplace-Fourier domain inversion of seismic oceanography data. Geophysical Research Letters, 43, 1211–1218.

    Article  Google Scholar 

  • Brossier, R., Operto, S., & Virieux, J. (2009). Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74, WCC105–WCC118.

    Article  Google Scholar 

  • Brossier, R., Operto, S., & Virieux, J. (2010). Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics, 75, R37–R46.

    Article  Google Scholar 

  • Choi, Y., & Alkhlifah, T. (2011). Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion. Geophysics, 76, R125–R134.

    Article  Google Scholar 

  • Choi, Y., & Alkhlifah, T. (2013). Frequency-domain waveform inversion using the phase derivative. Geophysical Journal International, 195, 1904–1916.

    Article  Google Scholar 

  • Gholami, Y., Brossier, R., Operto, S., Ribodetti, A., & Virieux, J. (2013). Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis. Geophysics, 78, R81–R105.

    Article  Google Scholar 

  • Ha, T., Chung, W., & Shin, C. (2009). Waveform inversion using a backpropagation algorithm and a Huber function norm. Geophysics, 74, R15–R24.

    Article  Google Scholar 

  • Ha, W., Chung, W., & Shin, C. (2012). Pseudo-Hessian matrix for the logarithmic objective function in full waveform inversion. Journal of Seismic Exploration, 21, 201–214.

    Google Scholar 

  • Ha, W., & Shin, C. (2012). Proof of the existence of both zero- and low-frequency information in a damped wavefield. Journal of Applied Geophysics, 83, 96–99.

    Article  Google Scholar 

  • Hansen, P.C. (2000). The L-curve and its use in the numerical treatment of inverse problems, In P. Johnston (Ed.) Computational inverse problems in electrocardiology (pp. 119–142). Southampton: WIT Press.

  • Jun, H., Kim, Y., Shin, J., Shin, C., & Min, D. J. (2014). Laplace-Fourier-domain elastic full-waveform inversion using time-domain modeling. Geophysics, 79, R195–R208.

    Article  Google Scholar 

  • Jun, H., Park, E., & Shin, C. (2015). Weighted pseudo-Hessian for frequency-domain elastic full waveform inversion. Journal of Applied Geophysics, 123, 1–17.

    Article  Google Scholar 

  • Kang, S., Bae, H. S., & Shin, C. (2012). Laplace-Fourier-Domain waveform inversion for fluid-solid media. Pure and Applied Geophysics, 169, 2165–2179.

    Article  Google Scholar 

  • Kim, Y., Cha, Y., Shin, C., Ko, S., & Seo, Y. (2009). Improved logarithmic waveform inversion considering the power-spectrum of the wavefield. Journal of Seiemic Exploration, 18, 215–228.

    Google Scholar 

  • Kim, Y., Cho, H., Min, D. J., & Shin, C. (2011). Comparison of frequency-selection strategies for 2D frequency-domain acoustic waveform inversion. Pure and Applied Geophysics, 168, 1715–1727.

    Article  Google Scholar 

  • Kim, Y., Shin, C., Calandra, H., & Min, D. J. (2013). An algorithm for 3D acoustic time-Laplace-Fourier-domain hybrid full waveform inversion. Geophysics, 78, R151–R166.

    Article  Google Scholar 

  • Mallick, S., & Frazer, N. L. (1987). Practical aspects of reflectivity modeling. Geophysics, 52, 1355–1364.

    Article  Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least squares estimation of non-linear parameters. SIAM Journal, 11, 431–441.

    Google Scholar 

  • Operto, S., Virieux, J., Dessa, J. X., & Pascal, G. (2006). Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full- waveform tomography: Application to the eastern Nankai trough. Journal of Geophysical Research, 111, B09306.

    Article  Google Scholar 

  • Park, E., Ha, W., Chung, W., Shin, C., & Min, D. J. (2013). 2D Laplace-domain waveform inversion of field data using a power objective function. Pure and Applied Geophysics, 170, 2075–2085.

    Article  Google Scholar 

  • Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167, 495–503.

    Article  Google Scholar 

  • Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics, 64, 888–901.

    Article  Google Scholar 

  • Rosenbaum, J. H. (1974). Synthetic microseismograms: Logging in porous formations. Geophysics, 39, 14–32.

    Article  Google Scholar 

  • Shin, C., & Cha, Y. H. (2008). Waveform inversion in the Laplace domain. Geophysical Journal International, 173, 922–931.

    Article  Google Scholar 

  • Shin, C., & Cha, Y. H. (2009). Waveform inversion in the Laplace-Fourier domain. Geophysical Journal International, 177, 1067–1079.

    Article  Google Scholar 

  • Shin, C., & Ha, W. (2008). A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics, 73, VE119–VE133.

    Article  Google Scholar 

  • Shin, C., Jang, S., & Min, D. J. (2001). Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophysical Prospecting, 49, 592–606.

    Article  Google Scholar 

  • Shin, C., Koo, N. H., Cha, Y. H., & Park, K. P. (2010). Sequentially ordered single-frequency 2-D acoustic waveform inversion in the Laplace-Fourier domain. Geophysical Journal International, 181, 935–950.

    Google Scholar 

  • Shin, C., & Min, D. J. (2006). Waveform inversion using a logarithmic wave- field. Geophysics, 71, R31–R42.

    Article  Google Scholar 

  • Sirgue, L., & Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69, 231–248.

    Article  Google Scholar 

  • Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.

    Article  Google Scholar 

  • Tikhonov, A., & Arsenin, V. (1977). Solution of ill-posed problems. Washington D.C.: Winston.

    Google Scholar 

  • Zhou, H., Zhang, Y., Gray, S.H., Zhang, G. (2002). Regularization algorithm for seismic inverse problems. In: 72nd SEG Annual Meeting Expanded Abstract.

Download references

Acknowledgments

We would like to thank STATOIL for supporting this study. This work was also supported by the Energy Efficiency&Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Nos. 20132510100060 and 20152520100740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmin Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, H., Kwon, J., Shin, C. et al. Regularized Laplace–Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function. Pure Appl. Geophys. 174, 955–980 (2017). https://doi.org/10.1007/s00024-016-1398-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1398-5

Keywords

Navigation