Skip to main content
Log in

A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss–Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson, W. L. (1979). Numerical-integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics, 44(7), 1287–1305.

    Article  Google Scholar 

  • Anderson, W. (1982). Fast Hankel transforms using related and lagged convolutions. ACM Transactions on Mathematical Software (TOMS), 8(4), 344–368.

    Article  Google Scholar 

  • Anderson, W. L. (1983), Fourier cosine and sine transforms using lagged convolutions in double-precision (subprogram DLAGF0/DLAGF1). Technical Report 83-320, U. S. Geological Survey.

  • Anderson, W. L. (1984). Computation of green’s tensor integrals for three-dimensional electromagnetic problems using fast Hankel transforms. Geophysics, 49(10), 1754–1759.

    Article  Google Scholar 

  • Aster, R. C., Borchers, B. and Thurber, C. H. (2005), Parameter estimation and inverse problems, Elsevier academic press.

  • Christensen, N. B. (1990). Optimized fast Hankel transform filters. Geophysical Prospecting, 38(5), 545–568.

    Article  Google Scholar 

  • Dai, Q. W., Hou, Z. C., & Chai, X. C. (2013). Application of transient electromagnetic method and EH-4 to investigation of mined-out areas of molybdenum deposits. Progress in Geophys (Chinese edition), 28(3), 1541–1546.

    Google Scholar 

  • Everett, M. E. (2009). Transient electromagnetic response of a loop source over a rough geological medium. Geophysical Journal International, 177(2), 421–429.

    Article  Google Scholar 

  • Farquharson, C. G., & Oldenburg, D. W. (1993). Inversion of time-domain electromagnetic data for a horizontally layered earth. Geophysical Journal International, 114(3), 433–442.

    Article  Google Scholar 

  • Farquharson, C. G., & Oldenburg, D. W. (1996). Approximate sensitivities for the electromagnetic inverse problem. Geophysical Journal International, 126(1), 235–252.

    Article  Google Scholar 

  • Guptasarma, D., & Singh, B. (1997). New digital linear filters for Hankel J0 and J1 transforms. Geophysical Prospecting, 45(5), 745–762.

    Article  Google Scholar 

  • Haber, E., & Oldenburg, D. (2000). A GCV based method for nonlinear ill-posed problems. Computational Geosciences, 4(1), 41–63.

  • Johansen, H. K., & Sorensen, K. (1979). Fast Hankel-transforms. Geophysical Prospecting, 27(4), 876–901.

    Article  Google Scholar 

  • Key, K. (2012). Is the fast Hankel transform faster than quadrature? Geophysics, 77(3), F21–F30.

    Article  Google Scholar 

  • Knight, J. H., & Raiche, A. P. (1982). Transient electromagnetic calculations using the Gaver-Gtehfest inverse Laplace transform method. Geophysics, 47(1), 47–50.

    Article  Google Scholar 

  • Kong, F. N. (2007). Hankel transform filters for dipole antenna radiation in a conductive medium. Geophysical Prospecting, 55(1), 83–89.

    Article  Google Scholar 

  • Li, J. P., Li, T. L., Zhao, X. F., & Liang, T. M. (2007). Study on the TEM all-time apparent resistivity of arbitrary shape loop source over the layered medium. Progress in Geophysics, 22(6), 1777–1780.

    Google Scholar 

  • Meng, Q. X., & Pan, H. P. (2012). Numerical simulation analysis of surface-hole TEM responses. Chinese Journal of Geophysics, 55(3), 1046–1053.

    Google Scholar 

  • Mollidor, L., Tezkan, B., Bergers, R., & Lohken, J. (2013). Float-transient electromagnetic method: in-loop transient electromagnetic measurements on lake Holzmaar. Germany, Geophysical Prospecting, 61(5), 1056–1064.

    Article  Google Scholar 

  • Newman, G. A., Hohmann, G. W., & Anderson, W. L. (1986). Transient electromagnetic response of a three-dimensional body in a layered earth. Geophysics, 51(8), 1608–1627.

    Article  Google Scholar 

  • Oldenburg, D. W., Haber, E., & Shekhtman, R. (2013). Three dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1), E47–E57.

    Article  Google Scholar 

  • Poddar, M. (1983). A rectangular loop source of current on multilayered earth. Geophysics, 48(1), 107–109.

    Article  Google Scholar 

  • Qi, Y., Huang, L., Wu, X., Fang, G., & Yu, G. (2014). Effect of loop geometry on tem response over layered earth. Pure and Applied Geophysics, 171(9), 2407–2415.

    Article  Google Scholar 

  • Raiche, A. P., & Bennett, L. A. (1987). Layered earth models using downhole electromagnetic receivers. Exploration Geophysics, 18, 325–329.

    Article  Google Scholar 

  • Rodder, A., & Tezkan, B. (2013). A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault. Jordan, Journal of Applied Geophysics, 88, 42–51.

    Article  Google Scholar 

  • Schaa, R., & Fullagar, P. K. (2012). Vertical and horizontal resistive limit formulas for a rectangular-loop source on a conductive half-space. Geophysics, 77(1), E91–E99.

    Article  Google Scholar 

  • Singh, N. P., & Mogi, T. (2005). Electromagnetic response of a large circular loop source on a layered earth: a new computation method. Pure and Applied Geophysics, 162(1), 181–200.

    Article  Google Scholar 

  • Singh, N. P., Utsugi, M., & Kagiyama, T. (2009). TEM response of a large loop source over a homogeneous earth model: a generalized expression for arbitrary source-receiver offsets. Pure and Applied Geophysics, 166(12), 2037–2058.

    Article  Google Scholar 

  • Ward, S. H., and Hohmann, G. W. (1987), Electromagnetic theory for geophysical applications, in Electromagnetic Methods in Applied Geophysics: SEG, 1-312.

  • Weng, A., Liu, Y., Chen, Y., Dong, R., Liao, X. and Jia, D. (2010), Computation of transient electromagnetic field from a rectangular loop over stratified earths, Chinese Journal of Geophysics(Chinese edition) 53(3SI), 646-650.

  • Xu, Z. P., & Hu, W. B. (2011). A high-accuracy numerical filtering algorithm for calculating transient electromagnetic responses. Geophysical Prospecting for Petroleum, 50(3), 213–218.

    Google Scholar 

  • Xu, Z. Y., Yang, H. Y., Deng, J. Z., Tang, H. Z., Zhang, H., Liu, X. H., et al. (2015). Research on forward simulation of down-hole TEM based on the abnormal field. Geophysical and Geochemical Exploration, 39(6), 1176–1182.

    Google Scholar 

  • Xue, G. Q., Qin, K. Z., Li, X., Qi, Z. P., & Zhou, N. N. (2011). Discovery and TEM detection to a large-scale porphyry molybdenum deposit in Tibet. Progress in Geophysics, 26(3), 954–960.

    Google Scholar 

  • Xue, G. Q., Wang, H. Y., Yan, S., & Zhou, N. N. (2014). Time-domain green function solution for transient electromagnetic field. Chinese Journal of Geophysics, 57(2), 671–678.

    Google Scholar 

  • Yu, J. C., Liu, Z. Q., Liao, J. J., Jiang, Z. L., & Sun, W. T. (2011). Application of full space transient electromagnetic method to mine water prevention and control. Coal Science and Technology, 39(9), 110–113.

    Google Scholar 

Download references

Acknowledgments

This work is supported partially by the National Natural Science Foundation of China (Grant No. 41504060, 41274075) and the national key basic research program of china (2014CB845903). We thank Dr. Niels B. Christensen for providing the program that generates filters for Hankel transforms. We are grateful to the anonymous reviews for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Huang.

Appendix

Appendix

A horizontal electrical dipole in a layered earth has both the TE and TM modes, but only the TE mode contributes to the vertical magnetic field. Combining the work of Ward and Hohmann (1987) and the work of Key (2009), in an N + 1 layered earth, the vertical magnetic field in the mth layer of the TE mode due to a finite-length horizontal electric dipole at the depth of z s in the nth layer has the following expression:

$$H_{z} = \frac{{I{\text{d}}s}}{4\pi }\frac{y}{R}\int_{0}^{\infty } {\left( {A_{{m,z_{s} }} e^{{ - u_{m} (z - z_{m} )}} + B_{{m,z_{s} }} e^{{u_{m} \left( {z - z_{m + 1} } \right)}} + \delta_{m,n} e^{{ - u_{n} |z - z_{s} |}} } \right)\frac{{\lambda^{2} }}{{u_{n} }}J_{1} \left( {\lambda R} \right){\text{d}}\lambda } .$$
(27)

In the layers above the nth layer (m < n):

$$A_{{m,z_{s} }} = B_{{m,z_{s} }} e^{{u_{m} (z_{m} - z_{m + 1} )}} R_{\text{TE}}^{m} .$$
(28)

For the first layer (m = 1), \(A_{1} = 0\). In the layers below the nth layer (m > n):

$$B_{{m,z_{s} }} = A_{{m,z_{s} }} e^{{ - u_{m} (z_{m + 1} - z_{m} )}} r_{\text{TE}}^{m} .$$
(29)

For the last layer (m = N + 1), \(B_{N + 1} = 0\). \(r_{TE}^{m}\) (m ≥ n) has the following expression:

$$r_{TE}^{m} = \frac{{Y_{m} - \tilde{Y}_{m + 1} }}{{Y_{m} + \tilde{Y}_{m + 1} }} ,$$
(30)

with \(Y_{m} = u_{m} /i\omega \mu_{m}\) and the following recursive relationship

$$\begin{aligned} \tilde{Y}_{N + 1} = Y_{N + 1} , \hfill \\ \tilde{Y}_{m} = Y_{m} \frac{{\tilde{Y}_{m + 1} + Y_{m} \tanh \left[ {u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}}{{Y_{m} + \tilde{Y}_{m + 1} \tanh \left[ {u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}} \hfill \\ \end{aligned} ,$$
(31)

where tanh is the hyperbolic tangent function. \(R_{TE}^{m}\) (m ≤ n) has the following relationship:

$$R_{TE}^{m} = \frac{{Y_{m} - \hat{Y}_{m - 1} }}{{Y_{m} + \hat{Y}_{m - 1} }} ,$$
(32)

with the following recursive relationship

$$\begin{aligned} \hat{Y}_{1} = Y_{1} , \hfill \\ \hat{Y}_{m} = Y_{m} \frac{{\hat{Y}_{m - 1} + Y_{m} \tanh \left[ {u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}}{{Y_{m} + \hat{Y}_{m - 1} \tanh \left[ {u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}} \hfill \\ \end{aligned} .$$
(33)

In the layer containing the source (m = n), the following relationships exist:

$$A_{{n,z_{s} }} = R_{TE}^{n} \left[ {B_{{n,z_{s} }} e^{{u_{n} (z_{n} - z_{n + 1} )}} + e^{{u_{n} (z_{n} - z_{s} )}} } \right] ,$$
(34a)
$$B_{{n,z_{s} }} = r_{TE}^{n} \left[ {A_{{n,z_{s} }} e^{{ - u_{n} (z_{n + 1} - z_{n} )}} + e^{{ - u_{n} (z_{n + 1} - z_{s} )}} } \right] .$$
(34b)

Solving the equations above, we get

$$\left[ {\begin{array}{*{20}c} {A_{{n,z_{s} }} } \\ {B_{{n,z_{s} }} } \\ \end{array} } \right] = \frac{1}{{1 - R_{TE}^{n} r_{TE}^{n} e^{{ - 2u_{n} (z_{n + 1} - z_{n} )}} }}\times\left[ {\begin{array}{*{20}c} {R_{TE}^{n} \left( {r_{TE}^{n} e^{{u_{n} (z_{n} - 2z_{n + 1} + z_{s} )}} + e^{{u_{n} (z_{n} - z_{s} )}} } \right)} \\ {r_{TE}^{n} \left( {R_{TE}^{n} e^{{ - u_{n} (z_{n + 1} - 2z_{n} + z_{s} )}} + e^{{ - u_{n} (z_{n + 1} - z_{s} )}} } \right)} \\ \end{array} } \right] .$$
(35)

Then, using the continuation relationship at the layer interfaces, for the layers above the nth layer (m < n), \(B_{{m,z_{s} }}\) has the following expression:

$$B_{{m,z_{s} }} = \frac{{Y_{m} \left( {1 + R_{TE}^{m + 1} } \right) + Y_{m + 1} \left( {1 - R_{TE}^{m + 1} } \right)}}{{2Y_{m} }}\times\left[ {B_{{m + 1,z_{s} }} e^{{ - u_{m + 1} (z_{m + 2} - z_{m + 1} )}} + \delta_{(m + 1),n} e^{{ - u_{n} (z_{s} - z_{n} )}} } \right] ,$$
(36)

and for the layers below the nth layer (m > n), A m has the following expression:

$$A_{{m,z_{s} }} = \frac{{Y_{m} \left( {1 + r_{TE}^{m - 1} } \right) + Y_{m - 1} \left( {1 - r_{TE}^{m - 1} } \right)}}{{2Y_{m} }}\times\left[ {A_{{m - 1,z_{s} }} e^{{ - u_{m - 1} (z_{m} - z_{m - 1} )}} + \delta_{(m - 1),n} e^{{ - u_{n} (z_{n + 1} - z_{s} )}} } \right] .$$
(37)

To make sure the stability of the numerical calculation, the hyperbolic tangent function “tanh” in Eq. (A-5) and (A-7) is calculated through a negative exponential function “exp”:

$$\tanh \left[ {u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right] = \frac{{1 - \exp \left[ { - 2u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}}{{1 + \exp \left[ { - 2u_{m} \left( {z_{m + 1} - z_{m} } \right)} \right]}} .$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, Q., Xie, X. et al. A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop. Pure Appl. Geophys. 173, 2869–2883 (2016). https://doi.org/10.1007/s00024-016-1336-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1336-6

Keywords

Navigation