Skip to main content
Log in

Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513–1977), the satellite era leading to a first global synthesis (1978–1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships’ logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York 1855) to produce a chart of prevailing winds across the entire world’s oceans, and by the early twentieth century the global surface ocean circulation that defines the major biogeographic regions was well-known. This information was further supplemented by data from large-scale plankton surveys. The launch of the Coastal Zone Color Scanner, specifically designed to study living marine resources on board the Nimbus 7 polar orbiting satellite in 1978, marked the advent of the satellite era. Over subsequent decades, correlation of satellite-derived sea surface temperature and chlorophyll data with in situ measurements enabled Longhurst (Ecological Geography of the Sea. Academic Press, New York 1998) to divide the global ocean into 51 ecological provinces with Polar, Westerly Wind, Trade Wind and Coastal Biomes clearly recognisable from earlier subdivisions of the oceans. Satellite imagery with semi-synoptic images of large areas of the oceans greatly aided definition of boundaries between provinces. However, ocean boundaries are dynamic, varying from season to season and year to year. More recent work has focused on the study of variability of currents, fronts and eddies, which are often the focus of high biological productivity. Direct tracking of animals using satellite-based systems has helped resolve the biological function of such features and indeed animals instrumented in this way have helped the study of such features in three dimensions, including depths beyond the reach of conventional satellite remote sensing. Patterns of surface productivity detected by satellite remote sensing are reflected in deep sea life on the sea floor at abyssal depths >3,000 m. Satellite remote sensing has played a major role in overcoming the problems of large spatial scales and variability in ocean dynamics and is now an essential tool for monitoring global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Aiken J, Fishwick J R, Lavender S, et al. 2007. Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October 2002: preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters. Int J Remote Sensing, 28: 497–516.

    Google Scholar 

  • Ballantyne, A. P., Alden, C. B, Miller, J. B., Tans P. P. and White, J. W. C. (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488: 70–72.

    Google Scholar 

  • Beaugrand G. (2004) Continuous Plankton Records: Plankton Atlas of the North Atlantic Ocean (1958–1999). I. Introduction and methodology. Mar Ecol Prog Ser Suppl: 3–10.

  • Bézy J-L., S.Delwart, M.Rast (2000) MERIS-A New Generation of Ocean-Colour Sensor on board ENVISAT, European Space Agency Bulletin. 103, 48–56.

  • Boyd I.L., Wanless S, and Camphuysen C.J. Top predators in marine ecosystems: their role in monitoring and management. (Cambridge University Press 2006).

  • Block B.A., Jonsen I.D., Jorgensen S. J., Winship A.J., Shaffer S.A., Bograd S.J., Hazen E.L., Foley D.G., Breed G.A., Harrison A.-L., Ganong J.E., Swithenbank A., Castleton M., Dewar H., Mate B.R., Shillinger G.L., Schaefer K.M., Benson S.R., Weise M.J., Henry R.W. &. Costa D. P (2011) Tracking apex marine predator movements in a dynamic ocean. Nature. 475. 86–90.

  • Brewin R.J.W., Lavender S.J., Hardman-Mountford N.J., and Hirata T. (2010) A spectral response approach for detecting dominant phytoplankton size class from satellite remote sensing. Acta Oceanologica Sinica. 29, 14–32. doi:10.1007/s13131-010-0018-y

    Google Scholar 

  • Brinton E. (1962). The distribution of Pacific euphausiids. Bull. Scripps Inst. Oceanogr. 8 (2): 51–270.

  • Carlson C.A., Ducklow H.W., and Michaels A.F. (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371, 405–408. doi:10.1038/371405a0.

  • Charrassin J.-B., Hindell M., Rintould S.R., Roquet F., Sokolov S., Biuw M., Costa D., Boehme L., Lovell P., Coleman R., Timmermann R., Meijers A., Meredith M.,. Park Y.-H., Bailleul F., Goebell M., Tremblay Y., Bost C.-A., McMahon C.R., Field I.C., Fedak M.A., and Guinet C. (2008) Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proceedings of the National Academy of Sciences 105: 11634–11639.

    Google Scholar 

  • Chen L., DeVries A.L. and Cheng C.-H. C. (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proceedings of the National Academy of Sciences 94:3817-3822.

  • CPR (Continuous Plankton Recorder) Survey Team (2004) Continuous Plankton Records: Plankton Atlas of the North Atlantic Ocean (1958–1999). II. Biogeographical charts. Mar Ecol Prog Ser Suppl :11–75.

  • D’Asaro E., Lee C., Rainville L., Harcourt R. and Thomas L. (2011) Enhanced Turbulence and Energy Dissipation at Ocean Fronts. Science, 332: 318–322.

  • Dahl T.W., Hammarlund E.U., Anbar A.E., Bond D.P.G., Gill B.C., Gordon G.W., Knoll A.H., Nielsen A.T., Schovsbo N.H. and Canfield DE (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences 107: 17911–17915.

  • Devred E., Sathyendranath S., & Platt T. (2007) Delineation of ecological provinces using ocean colour radiometry. Marine Ecology Progress Series, 346: 1–13.

  • Edinburgh Oceanographic Laboratory (1973) Continuous Plankton Records: a plankton atlas of the North Atlantic and the North Sea. Bull Mar Ecol 7:1–174.

  • Feldman, G.C., Kuring N.A., Ng C., Esaias, W.E., McClain, C.R., Elrod, J.A., Maynard, N., Endres, D., Evands, R., Brown, J., Walsh, S., Carle M. and Podesta G. (1989) Ocean Color: Availability of the Global Data Set. Eos 70: 634–641.

  • Gordon H.R., Clark D.S. Mueller J.L., Hovis W.A. (1980) Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with surface measurements. Science 210: 63–66.

    Google Scholar 

  • Groves, C. (2005). Wilson, D. E.; Reeder, D. M. eds. Mammal Species of the World (3rd ed.). Baltimore: Johns Hopkins University Press. pp. 111–184.

  • G. Hadley (1735) On the cause of the general trade winds. Phil Trans, Roy. Soc. 34, 58-62,

  • Hardy, A. C. (1926). The Discovery Expedition. A new method of plankton research. Nature London, 118, 630–632.

  • Hays GC (2008). Sea turtles: a review of some key recent discoveries and remaining questions. Journal of Experimental Marine Biology and Ecology 356, 1–7.

    Google Scholar 

  • Hays G.C., Webb P.I., Hayes J.P., Priede I.G. & French J. (1991) Satellite tracking of the loggerhead turtle (Caretta caretta) in the Mediterranean. J. Mar. Biol. Assoc. U.K. 71: 743–746.

    Google Scholar 

  • Hovis, W.A., Clark, D.K., Anderson, F., Austin, R.W., Wilson, W.H., Baker, E.T., Ball, D., Gordon, H.R., Mueller, J.L., El-Sayed, S.Z., Sturm, B., Wrigley, R.C., Yentsch C.S. (1980) Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery. Science, 210:60–63.

  • Jamieson A.J. and Yancey P.H. (2012) On the Validity of the Trieste Flatfish: Dispelling the Myth. Biol. Bull. 222: 171–175.

    Google Scholar 

  • Jones C.G., Lawton J.H., Shachak M. (1994) Organisms as ecosystem engineers. Oikos, 69, 373–386.

  • Kock K.-H. (1992) Antarctic fish and fisheries. Cambridge University Press.

  • Longhurst A. Ecological Geography of the Sea. (Academic Press, New York 1998).

  • Maury MF. The Physical Geography of the Sea (Harper and Bros. New York. 1855).

  • McGillicuddy D.J., Anderson L.A., Bates N.R., Nibby T., Buesseler K.O., Carlson C.A., David C.S., Ewart C., Falkowski P.G., Goldthwait S.A., Hansell D.A., Jenkins W.J., Johnson R., Kosynrev V.K., Ledwell J.R., Li Q.P., Siegel D.A., and Steinberg D.K. (2007) Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316:1021–1026.

    Google Scholar 

  • Miller, P.I. (2009) Composite front maps for improved visibility of dynamic oceanic fronts on cloudy AVHRR and SeaWiFS data, Journal of Marine Systems 78: 327–336.

    Google Scholar 

  • Miller, P.I. & Christodoulou, S. (In Press) Frequent locations of ocean fronts as an indicator of pelagic diversity: application to marine protected areas and renewables. Marine Policy

  • Miller, P.I., Read, J.F. & Dale, A.C. (2013) Thermal front variability along the North Atlantic Current observed using satellite microwave and infrared data. Deep Sea Research Part II: Topical Studies in Oceanography. (In press).

  • Moisan T.A. H., Sathyendranath S. and Bouman H.A (2012). Ocean Color Remote Sensing of Phytoplankton Functional Types, Remote Sensing of Biomass-Principles and Applications, Dr. Lola Fatoyinbo (Ed.), ISBN: 978-953-51-0313-4, InTech, doi: 10.5772/17174. Available from: http://www.intechopen.com/books/remote-sensing-of-biomass-principles-and-applications/remote-sensing-of-marine-phytoplankton-biomass.

  • Persson A.O. (2006) Hadley’s Principle: Understanding and Misunderstanding the Trade Winds. History of Meteorology 3, 17–41.

  • Pinet P.R. (1998) Invitation to Oceanography: Web Enhanced Edition. Jones & Bartlett. Sudbury, MA. USA.

  • Pingree, R.D. (2002) Ocean structure and climate (Eastern North Atlantic): in situ measurement and remote sensing (altimeter). Journal of the Marine Biological Association of the United Kingdom, 82, 681–707.

    Google Scholar 

  • Pingree, R. and Garcia-Soto C. (2004) Annual westward propagating anomalies near 268 N and eddy generation south of the Canary Islands: remote sensing (altimeter/SeaWiFS) and in situ measurement. J. Mar. Biol. Ass. U.K. (2004), 84, 1105–1115.

    Google Scholar 

  • Pingree, R.D., Lecann, B. (1992). 3 anticyclonic slopewater oceanic eddies (SWODDIES) in the Southern Bay of Biscay in 1990. Deep-Sea Research Part A 39 (7–8A), 1147–1175.

    Google Scholar 

  • Priede, I. G. (1983) Use of satellites in marine biology, In Experimental Biology at Sea. (eds MacDonald, A.G. and Priede, I.G.) (Academic Press. New York) pp 3–50.

  • Priede I.G. (1984) A basking shark (Cetorhinus maximus) tracked by satellite together with simultaneous remote sensing. Fisheries Research 2: 201–216.

    Google Scholar 

  • Priede I.G. & Miller P.I. (2009) A basking shark (Cetorhinus maximus) tracked by satellite together with simultaneous remote sensing II: new analysis reveals orientation to a thermal front. Fisheries Research 5, 370–372.

    Google Scholar 

  • Priede, I.G., Osborn, K.J., Gebruk, A.V., Jones, D., Shale, D., Rogacheva, A. and Holland N.D. (2012) Observations on torquaratorid acorn worms (Hemichordata, Enteropneusta) from the North Atlantic with descriptions of a new genus and three new species. Invertebrate Biology 131: 244–257.

    Google Scholar 

  • Reid P.C., Colebrook JM, Matthews JBL, Aiken J. and the Continuous Plankton Recorder Team (2003) The Continuous Plankton Recorder: concepts and history, from Plankton Indicator to undulating recorders. Progress in Oceanography 58:117–173.

  • Rex MA, Etter RJ (2010) Deep-Sea Biodiversity, Pattern & Scale (Harvard University Press, Cambridge, MA).

  • Richardson P.L. (1980) Gulf stream ring trajectories. Journal of Physical Oceanography 10: 90–104.

    Google Scholar 

  • Richardson P. L (2008) Benjamin Franklin and Timothy Folger’s first printed chart of the Gulf Stream. Science 207: 643–645.

    Google Scholar 

  • Rosen D.E. (1975) Doctrinal Biogeography. The Quarterly Review of Biology, 50: 69–70.

  • Sabine C.L. et al (2004) The Oceanic Sink for Anthropogenic CO2. Science 305, 367–371.

    Google Scholar 

  • Sarmiento J.L. & Gruber N. Ocean Biogeochemical Dynamics (Princeton University Press, 2006).

  • Sathyendranath, S. and Platt, T (1989). Computation of aquatic primary production: extended formalism to include effects of angular and spectral distribution of light. Limnol Oceanogr. 34: 188–198.

    Google Scholar 

  • Sathyendranath, S., Watts, L., and Devred, E.,2004. Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar. Ecol. Prog. Ser. 272: 59–68.

    Google Scholar 

  • Siegel D.A., Peterson P., McGillicuddy D.J., Martitorean and Nelson N.B. (2011) Bio‐optical footprints created by mesoscale eddies in the Sargasso Sea. Geophysical Research Letters 38: doi:10.1029/2011GL047660.

  • Smith, K. L. Jr., Baldwin R. J., Ruhl H. A., Kahru M., Mitchell B. G., Kaufmann R. S. (2006) Climate effect on food supply to depths greater than 4,000 meters in the northeast Pacific. Limnol. Oceanogr., 51(1), 166–176.

    Google Scholar 

  • Smith K.L. Jr., Ruhl H. A., Bett B. J., Billett D. S. M., Lampitt R. S., and Kaufmann R. S. (2009) Climate, carbon cycling, and deep-ocean ecosystems. Proc Natl Acad Sci USA 106: 19211–19218.

    Google Scholar 

  • Sims, D.W., Witt, M.J., Richardson, A.J., Southall, E.J., & Metcalfe, J.D. (2006) Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proceedings of the Royal Society B-Biological Science, 273, 1195–1201.

  • Sims, D.W. & Quayle, V.A. (1998) Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature, 393, 460–464.

  • Taylor, J.R. and Ferrari R. (2011) Ocean fronts trigger high latitude phytoplankton blooms Geophysical Research Letters, 38, L23601.

  • Taylor, A. H., & Stephens, J. A. (1980). Latitudinal displacements of the Gulf Stream (1966 to 1977) and their relation to changes in temperature and zooplankton abundance in the N.E. Atlantic. Oceanologica Acta, 3, 145–149.

  • Tilstone, G., T. Smyth, A. Poulton, and R. Hutson (2009), Measured and remotely sensed estimates of primary production in the Atlantic Ocean from 1998 to 2005, Deep-Sea Research Part II-Topical Studies in Oceanography, 56(15), 918–930.

  • Tobler W. R. (1970) Computer Movie Simulating Urban Growth in the Detroit Region Economic Geography, 46: 234–240 (Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods).

  • UNESCO. 2009. Global Open Oceans and Deep Seabed (GOODS)–Biogeographic Classification. Paris, UNESCO-IOC. (IOC Technical Series, 84.).

  • VLIZ (2009). Longhurst Biogeographical Provinces. Available online at http://www.vliz.be/vmdcdata/vlimar/downloads.php. Consulted on 2012-08-20.

  • Yentsch C.S. (1965) Distribution of chlorophyll and phaeophytin in the open ocean. Limnology & Oceanography. 11: 117–147.

Download references

Acknowledgments

This paper is based on a talk given at the conference on “Main Problems of Contemporary Cartography 2012, Satellite technologies in GIS and cartography” held in Wrocław, Poland, 28–30 March 2012. I thank Dr. Tomasz Niedzielski and the organisers for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imants G. Priede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priede, I.G. Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing. Pure Appl. Geophys. 171, 1013–1027 (2014). https://doi.org/10.1007/s00024-013-0708-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0708-4

Keywords

Navigation