Skip to main content
Log in

Existence of Quasinormal Modes for Kerr–AdS Black Holes

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This paper establishes the existence of quasinormal frequencies converging exponentially to the real axis for the Klein–Gordon equation on a Kerr–AdS spacetime when Dirichlet boundary conditions are imposed at the conformal boundary. The proof is adapted from results in Euclidean scattering about the existence of scattering poles generated by time-periodic approximate solutions to the wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balasubramanian, V., Buchel, A., Green, S.R., Lehner, L., Liebling, S.L.: Holographic thermalization, stability of anti-de Sitter space, and the fermi–pasta–ulam paradox. Phys. Rev. Lett. 113(7), 071601 (2014)

    Article  ADS  Google Scholar 

  2. Bizoń, P.: Is AdS stable? Gen. Relativ. Gravit. 46(5), 1724 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bizoń, P., Maliborski, M.J., Rostworowski, A.: Resonant dynamics and the instability of anti-de Sitter spacetime. Phys. Rev. Lett. 115(8), 081103 (2015)

    Article  ADS  Google Scholar 

  4. Bizoń, P., Rostworowski, A.: Weakly turbulent instability of anti de Sitter spacetime. Phys. Rev. Lett. 107, 031102 (2011)

    Article  ADS  Google Scholar 

  5. Buchel, A., Green, S.R., Lehner, L., Liebling, S.L.: Conserved quantities and dual turbulent cascades in anti-de Sitter spacetime. Phys. Rev. D 91(6), 064026 (2015)

    Article  ADS  Google Scholar 

  6. Craps, B., Evnin, O., Vanhoof, J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 10, 048 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Craps, B., Evnin, O., Vanhoof, J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 01, 108 (2015)

    Article  ADS  Google Scholar 

  8. Dias, Ó.J.C., Horowitz, G.T., Marolf, D., Santos, J.E.: On the nonlinear stability of asymptotically anti-de Sitter solutions. Class. Quantum Gravity 29, 235019 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dias, Ó.J.C., Horowitz, G.T., Santos, J.E.: Gravitational turbulent instability of anti-de Sitter space. Class. Quantum Gravity 29(19), 194002 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dold, D.: Unstable mode solutions to the Klein–Gordon equation in Kerr–anti-de Sitter spacetimes. arXiv:1509.04971v2 (2015)

  11. Dyatlov, S.: Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. 306, 119–163 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. http://math.mit.edu/~dyatlov/res/res

  13. Festuccia, G., Liu, H.: A Bohr–Sommerfeld quantization formula for quasinormal frequencies of AdS black holes. Adv. Sci. Lett. 2(2), 221–235 (2009)

    Article  Google Scholar 

  14. Gannot, O.: A global definition of quasinormal modes for Kerr–AdS black holes. arXiv:1407.6686 (2014)

  15. Gannot, O.: Quasinormal modes for Schwarzschild–AdS black holes: exponential convergence to the real axis. Commun. Math. Phys. 330(2), 771–799 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gannot, O.: Elliptic boundary value problems for Bessel operators, with applications to anti-de Sitter spacetimes. arXiv:1507.02794 (2015)

  17. Gohberg, I., Kreĭn, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators, vol. 18. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  18. Hintz, P., Vasy, A.: Asymptotics for the wave equation on differential forms on Kerr-de Sitter space. arXiv:1502.03179 (2015)

  19. Holzegel, G.: On the massive wave equation on slowly rotating Kerr–AdS spacetimes. Commun. Math. Phys. 294(1), 169–197 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de Sitter spacetimes. J. Hyperb. Differ. Equ. 09(02), 239–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holzegel, G., Smulevici, J.: Decay properties of Klein–Gordon fields on Kerr–AdS spacetimes. Commun. Pure Appl. Math. 66(11), 1751–1802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holzegel, G., Smulevici, J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr–AdS spacetimes. Anal. PDE 7(5), 1057–1090 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holzegel, G., Warnick, C.: Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes. J. Funct. Anal. 266(4), 2436–2485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  25. Ionescu, A.D., Klainerman, S.: On the uniqueness of smooth, stationary black holes in vacuum. Invent. Math. 175(1), 35–102 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Levin, B.: Distribution of Zeros of Entire Functions, vol. 5. American Mathematical Society, Providence (1964)

    MATH  Google Scholar 

  27. Melrose, R.B.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Ikawa, M. (ed.) Lecture Notes in Pure and Applied Mathematics, pp. 85–130. Marcel Dekker Inc, New York (1994)

    Google Scholar 

  28. Melrose, R.B.: Geometric Scattering Theory, vol. 1. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  29. Petkov, V., Zworski, M.: Semi-classical estimates on the scattering determinant. Ann. Henri Poincaré 2, 675–711 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Roberts, G.: Uniqueness in the Cauchy problem for characteristic operators of Fuchsian type. J. Differ. Equ. 38(3), 374–392 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sjöstrand, J., Zworski, M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4, 729–769 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stefanov, P.: Quasimodes and resonances: sharp lower bounds. Duke Math. J. 99(1), 75–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stefanov, P.: Approximating resonances with the complex absorbing potential method. Commun. Partial Differ. Equ. 30(12), 1843–1862 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, S., Zworski, M.: From quasimodes to resonances. Math. Res. Lett. 5, 261–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Warnick, C.: The massive wave equation in asymptotically AdS spacetimes. Commun. Math. Phys. 321(1), 85–111 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Warnick, C.: On quasinormal modes of asymptotically anti-de Sitter black holes. Commun. Math. Phys. 333(2), 959–1035 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oran Gannot.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gannot, O. Existence of Quasinormal Modes for Kerr–AdS Black Holes. Ann. Henri Poincaré 18, 2757–2788 (2017). https://doi.org/10.1007/s00023-017-0568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0568-z

Navigation