Skip to main content
Log in

On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of quasinormal modes (QNM) for strongly hyperbolic systems on stationary, asymptotically anti-de Sitter black holes, with very general boundary conditions at infinity. We argue that for a time slicing regular at the horizon the QNM should be identified with certain H k eigenvalues of the infinitesimal generator \({\mathcal{A}}\) of the solution semigroup. Using this definition we are able to prove directly that the quasinormal frequencies form a discrete, countable subset of \({\mathbb{C}}\) which in the globally stationary case accumulates only at infinity. We avoid any need for meromorphic extension, and the quasinormal modes are honest eigenfunctions of an operator on a Hilbert space. Our results apply to any of the linear fields usually considered (Klein- Gordon, Maxwell, Dirac, etc.) on a stationary black hole background, and do not rely on any separability or analyticity properties of the metric. Our methods and results largely extend to the locally stationary case. We provide a counter-example to the conjecture that quasinormal modes are complete. We relate our approach directly to the approach via meromorphic continuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kokkotas, K.D., Schmidt, B.G.: Quasinormal modes of stars and black holes. Living Rev. Rel. series 2, 2 (1999). arXiv:gr-qc/9909058 [gr-qc]. http://relativity.livingreviews.org/Articles/lrr-1999-2/fulltext.html

  2. Berti, E., Cardoso, V., Starinets, A.O.: Quasinormal modes of black holes and black branes. Class. Quant. Grav. series 26, 163001 (2009). doi:10.1088/0264-9381/26/16/163001. arXiv:0905.2975 [gr-qc]

  3. Konoplya, R., Zhidenko, A.: Quasinormal modes of black holes: from astrophysics to string theory. Mod. Phys. series 83, 793–836 (2011). arXiv:1102.4014 [gr-qc]

  4. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Institut Mittag-Leffler Report no. 14, 2008/2009 1 (2008). arXiv:0811.0354

  5. Kovtun, P.K., Starinets, A.O.: Quasinormal modes and holography. Phys. Rev. D series 72, 086009 (2005). doi:10.1103/PhysRevD.72.086009. arXiv:hep-th/0506184 [hep-th]

  6. Dafermos, M.: The Black Hole Stability problem. Talk given at the Newton Institute, Cambridge (2006). http://www.newton.ac.uk/webseminars/pg+ws/2006/gmx/1010/dafermos/

  7. Anderson, M.T.: On the uniqueness and global dynamics of AdS spacetimes. Class. Quant. Grav. series 23, 6935 (2006). arXiv:hep-th/0605293

  8. Bizon, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. series 107, 031102 (2011). doi:10.1103/PhysRevLett.107.031102. arXiv:1104.3702 [gr-qc]

  9. Vasy, A.: Microlocal analysis of asymptotically hyperbolic and kerr-de sitter spaces. Invent. Math. 194, 381–513 (2013). arXiv:1012.4391

  10. Horowitz, G.T., Hubeny, V.E.: Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D series 62, 024027 (2000) doi:10.1103/PhysRevD.62.024027. arXiv:hep-th/9909056 [hep-th]

  11. Chan, J., Mann, R.B.: Scalar wave falloff in asymptotically anti-de Sitter backgrounds. Phys. Rev. D series 55, 7546–7562 (1997). doi:10.1103/PhysRevD.55.7546. arXiv:gr-qc/9612026 [gr-qc]

  12. Chan, J., Mann, R.B: Scalar wave falloff in topological black hole backgrounds. Phys. Rev. D series 59, 064025 (1999). doi:10.1103/PhysRevD.59.064025

  13. Cardoso, V., Lemos, J.P.: Quasinormal modes of toroidal, cylindrical and planar black holes in anti-de Sitter space-times. doi: Class. Quant. Grav. series 18, 5257–5267 (2001). doi:10.1088/0264-9381/18/23/319. arXiv:gr-qc/0107098 [gr-qc]

  14. Cardoso, V., Lemos, J.P.: Quasinormal modes of Schwarzschild anti-de Sitter black holes: electromagnetic and gravitational perturbations. Phys. Rev. D series 64, 084017 (2001). doi:10.1103/PhysRevD.64.084017. arXiv:gr-qc/0105103 [gr-qc]

  15. Cardoso, V., Lemos, J.P.: Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes. Phys. Rev. D series 63, 124015 (2001). doi:10.1103/PhysRevD.63.124015. arXiv:gr-qc/0101052 [gr-qc]

  16. Bachelot A.: Gravitational scattering of electromagnetic field by Schwarzschild black-hole. Annales de L’Institut Henri Poincare Section Physique Theorique 54, 261–320 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  17. Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann Inst. Henri Poincaré, Phys. Théor. 59(1), 3–68 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Barreto A.S., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mazzeo, R.R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. series 75(2), 260–310 (1987). doi:10.1016/0022-1236(87)90097-8

  20. Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave equation on the de Sitter Schwarzschild. Metric. Commun. Math. Phys. series 282, 697–719 (2008) doi:10.1007/s00220-008-0553-y. arXiv:0706.0350

  21. Melrose, R., Sá aretto, A., Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter-Schwarzschild space. Commun. Part. Diff. Eq. 39(3) (2014). arXiv:0811.2229

  22. Dyatlov, S.: Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. series 306, 119–163 (2011). doi:10.1007/s00220-011-1286-x. arXiv:1003.6128 [math.AP]

  23. Dyatlov, S.: Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes. Annales Henri Poincare. series 13, 1101–1166 (2012). doi:10.1007/s00023-012-0159-y. arXiv:1101.1260 [math.AP]

  24. Dyatlov S.: Exponential energy decay for Kerr-de Sitter black holes beyond event horizons. Math. Res. Lett. 18, 1023–1035 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. Annales Henri Poincaré series 12(7), 1349–1385 (2011). doi:10.1007/s00023-011-0108-1

  26. Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. arXiv:1302.4483 [math-ph]

  27. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. arXiv:1305.1723 [gr-qc]

  28. Warnick, C.: The Massive wave equation in asymptotically AdS spacetimes. Commun. Math. Phys. series 321, 85–111 (2013). doi:10.1007/s00220-013-1720-3. arXiv:1202.3445 [gr-qc]

  29. Gannot, O.: Quasinormal modes for AdS–Schwarzschild black holes: exponential convergence to the real axis. Commun. Math. Phys. 330, 771–799 (2014). arXiv:1212.1907 [math.SP]

  30. Holzegel, G., Smulevici, J.: Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes. Comm. Pure Appl. Math. 66(11), 1751–1802 (2013). arXiv:1110.6794 [gr-qc]

  31. Holzegel, G., Smulevici, J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. arXiv:1303.5944 [gr-qc]

  32. Beyer, H.R.: On the completeness of the quasinormal modes of the Poschl-Teller potential. Commun. Math. Phys. series 204, 397–423 (1999). doi:10.1007/s002200050651. arXiv:gr-qc/9803034 [gr-qc]

  33. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. series 114(2), 185–200 (1994). doi:10.1006/jcph.1994.1159

  34. Hille, E.: On Laplace integrals. In: Kallman, R.R. (ed.) Einar Hille: Classical Analysis and Functional Analysis, Selected Papers, MIT Press, Cambridge (1975)

    Google Scholar 

  35. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Mathematische Annalen series 347(2), 455–478 (2010). doi:10.1007/s00208-009-0439-0. arXiv:0910.0859

  36. Bátkai, A., Engel, K.-J., Prüss, J., Schnaubelt, R.: Polynomial stability of operator semigroups. Math. Nachr. series 279, 1425–1440 (2006). doi:10.1002/mana.200410429

  37. Holzegel, G.H., Warnick, C.M.: Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes. J. Funct. Anal. 266(4), 2436–2485. arXiv:1209.3308 [gr-qc]

  38. Holzegel, G.: On the massive wave equation on slowly rotating Kerr-AdS spacetimes. Commun. Math. Phys. series 294 169–197 (2010). doi:10.1007/s00220-009-0935-9. arXiv:0902.0973 [gr-qc]

  39. Cardoso, V., Natario, J., Schiappa, R.: Asymptotic quasinormal frequencies for black holes in nonasymptotically flat space-times. J. Math. Phys. series 45, 4698–4713 (2004). doi:10.1063/1.1812828. arXiv:hep-th/0403132 [hep-th]

  40. Natario, J., Schiappa, R.: On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity. Adv. Theor. Math. Phys. series 8, 1001–1131 (2004). arXiv:hep-th/0411267 [hep-th]

  41. Harmark, T., Natario, J., Schiappa, R.: Greybody Factors for d-Dimensional Black Holes. Adv. Theor. Math. Phys. series 14, 727–793 (2010). arXiv:0708.0017 [hep-th]

  42. Breitenlohner, P., Freedman, D.Z.: Stability in gauged extended supergravity. Annals Phys. series 144, 249 (1982). doi:10.1016/0003-4916(82)90116-6

  43. Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  44. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence RI (1998)

  45. Hille, E.: Functional analysis and semi-groups, vol. XXXI of Colloquium Publications. American Mathematical Society, New York (1948)

  46. Renardy, M., Rogers, R.: An introduction to partial differential equations. In: Texts in Applied Mathematics Series. Springer, Berlin (1993)

  47. Alexakis, S., Ionescu, A., Klainerman, S.: Hawking’s local rigidity theorem without analyticity. Geom. Funct. Anal. series 20(4), 845–869 (2010). doi:10.1007/s00039-010-0082-7. arXiv:0902.1173 [gr-qc]

  48. Guillarmou C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. series 129(1), 1–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Gibbons, G., Warnick, C.: Universal properties of the near-horizon optical geometry. Phys. Rev. D series 79, 064031 (2009). doi:10.1103/PhysRevD.79.064031. arXiv:0809.1571 [gr-qc]

  50. Roberts, G.B.: Uniqueness in the Cauchy problem for characteristic operators of Fuchsian type. J. Differ. Equ. series 38(3), 374–392 (1980). doi:10.1016/0022-0396(80)90014-5

  51. Caldrón, A.P.: Uniqueness in the Cauchy problem for partial differential equations. Am. J. Math. series 80(1), 16–36 (1958). http://www.jstor.org/stable/2372819

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude M. Warnick.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warnick, C.M. On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes. Commun. Math. Phys. 333, 959–1035 (2015). https://doi.org/10.1007/s00220-014-2171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2171-1

Keywords

Navigation