Skip to main content
Log in

On the Splitting Problem for Lorentzian Manifolds with an \({\mathbb {R}}\)-Action with Causal Orbits

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the interplay between the global causal and geometric structures of a spacetime (Mg) and the features of a given smooth \({\mathbb {R}}\)-action \(\rho \) on M whose orbits are all causal curves, building on classic results about Lie group actions on manifolds described by Palais (Ann Math 73:295–323, 1961). Although the dynamics of such an action can be very hard to describe in general, simple restrictions on the causal structure of (Mg) can simplify this dynamics dramatically. In the first part of this paper, we prove that \(\rho \) is free and proper (so that M splits topologically) provided that (Mg) is strongly causal and \(\rho \) does not have what we call weakly ancestral pairs, a notion which admits a natural interpretation in terms of “cosmic censorship.” Accordingly, such condition holds automatically if (Mg) is globally hyperbolic. We also prove that M splits topologically if (Mg) is strongly causal and \(\rho \) is the flow of a complete conformal Killing null vector field. In the second part, we investigate the class of Brinkmann spacetimes, which can be regarded as null analogues of stationary spacetimes in which \(\rho \) is the flow of a complete parallel null vector field. Inspired by the geometric characterization of stationary spacetimes in terms of standard stationary ones (Javaloyes and Sánchez in Class Quantum Gravity 25:168001, 2008), we obtain an analogous geometric characterization of when a Brinkmann spacetime is isometric to a standard Brinkmann spacetime. This result naturally leads us to discuss a conjectural null analogue for Ricci-flat four-dimensional Brinkmann spacetimes of a celebrated rigidity theorem by Anderson (Ann Henri Poincaré 1:977–994, 2000) and highlight its relation with a long-standing conjecture by Ehlers and Kundt (Gravitation: an introduction to current research. Wiley, New York, pp 49–101, 1962).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.T.: On stationary vacuum solutions to the Einstein equations. Ann. Henri Poincaré 1, 977–994 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bartolo, R., Candela, A.M., Flores, J.L.: Connections by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field. Rev. Mat. Ibero. (in press)

  3. Batat, W., Calvaruso, G., De Leo, B.: Homogeneous Lorentzian 3-manifolds with a parallel null vector field. Balkan J. Geom. Appl. 14, 11–20 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Baum, H., Lärz, K., Leistner, T.: On the full holonomy group of special Lorentzian manifolds. Math. Z. 277, 797–828 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 2nd edn. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  6. Bernal, A.N., Sánchez, M.: Smoothness of time function and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bicak, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt (ed.) Einstein’s Field Equations and Their Physical Interpretations, Lecture Notes Physics, vol. 540. Springer, Heidelberg, pp. 1–126 (2000). arXiv:gr-qc/0004016

  8. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperbolicity and Palais–Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caponio, E., Javaloyes, M.A., Masiello, A.: On the energy functional on Finsler manifolds and applications to stationary spacetimes. Math. Ann. 351, 365–392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Costa e Silva, I., Flores, J.L., Herrera, J.: Rigidity of geodesic completeness in gravitational wave spacetimes. Preprint (2016). arXiv:1605.03619

  12. Duggal, K., Sahin, B.: Differential Geometry of Lightlike Submanifolds. Birkhäuser, Basel (2010)

    Book  MATH  Google Scholar 

  13. Ehlers, J., Kundt, K.: Exact solutions of the gravitational field equations. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 49–101. Wiley, New York (1962)

    Google Scholar 

  14. Flores, J.L., Sánchez, M.: Causality and conjugate points in general plane waves. Class. Quantum Gravity 20, 2275–2291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flores, J.L., Sánchez, M.: On the geometry of pp-wave type spacetimes. Analytical and numerical approaches to mathematical relativity. Lecture Notes in Physics, pp. 79–98 Springer, Berlin (2006)

  16. Galaev, A.S., Leistner, T.: On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines. Class. Quantum Gravity 27, 225003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Geroch, R.P.: A method for generating solution of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Geroch, R.P.: A method for generating solution of Einstein’s equations 2. J. Math. Phys. 13, 394–404 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Harris, S.G.: Conformally stationary spacetimes. Class. Quantum Gravity 9, 1823–1827 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Harris, S.G., Low, R.J.: Causal monotonicity, omniscient foliations and the shape of space. Class. Quantum Gravity 18, 27–43 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  22. Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  23. Hubeny, V.E., Rangamani, M.: Causal structures of pp-waves. J. High Energy Phys. 0212, 043 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Javaloyes, M.A., Sánchez, M.: A note on the existence of standard splittings for conformally stationary spacetimes. Class. Quantum Gravity 25, 168001 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1962)

    MATH  Google Scholar 

  26. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)

    Book  Google Scholar 

  27. Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Ann. (2015). doi:10.1007/s00208-015-1270-4

    MATH  Google Scholar 

  28. Minguzzi, E.: Causality of spacetimes admitting a parallel null vector and weak KAM theory. arXiv:1211.2685 (2012)

  29. Minguzzi, E.: Eisenhart’s theorem and the causal simplicity of Eisenhart’s spacetime. Class. Quantum Gravity 24, 2781–2807 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Baum, H., Alekseevsky, D. (eds.) Recent Developments in Semi-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc. Publ. House, Zurich (2008)

  31. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  32. Palais, R.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73, 295–323 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  33. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  34. Penrose, R.: A remarkable property of plane waves in general relativity. Rev. Mod. Phys. 37, 215–220 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Piccione, P., Zeghib, A.: Actions of discrete groups on stationary Lorentz manifolds. Ergod. Theory Dyn. Syst. 34, 1640–1673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. van den Ban, E.P.: Lecture notes on Lie groups. http://www.staff.science.uu.nl/~ban00101/lecnotes/lie2010

  37. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  38. Walker, A.G.: Canonical form for a Riemannian space with a parallel field of null planes. Q. J. Math. Oxf. 1, 69–79 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zeghib, A.: Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics. Geom. Funct. Anal. 9, 823–854 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Flores.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa e Silva, I.P., Flores, J.L. On the Splitting Problem for Lorentzian Manifolds with an \({\mathbb {R}}\)-Action with Causal Orbits. Ann. Henri Poincaré 18, 1635–1670 (2017). https://doi.org/10.1007/s00023-017-0551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0551-8

Navigation