Skip to main content
Log in

On Eigenfunction Expansions of First-Order Symmetric Systems and Ordinary Differential Operators of an Odd Order

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study general (not necessarily Hamiltonian) first-order symmetric systems \({J y'-B(t)y=\Delta(t) f(t)}\) on an interval \({\mathcal{I}=[a,b \rangle}\) with the regular endpoint a. It is assumed that the deficiency indices \({n_{\pm}(T_{\rm min})}\) of the minimal relation \({T_{\rm min}}\) satisfy \({n_{+}(T_{\rm min})\leq n_{-}(T_{\rm min})}\). We define special \({\lambda}\)-depending boundary conditions with Nevanlinna-type spectral parameter \({\tau=\tau(\lambda)}\) at the singular endpoint b. With boundary value problem involving such conditions, we associate an exit space self-adjoint extension \({\tilde{T}}\) of \({T_{\rm min}}\) and the \({N \times N}\)-matrix m-function \({m(\cdot)}\) of the size \({N={\rm dim ker} (iJ+I)}\). The role of \({m(\cdot)}\) is similar to that of the Weyl function for a Hamiltonian system. Using the m-function, we obtain the eigenfunction expansion with \({N \times N}\)-matrix spectral function \({\Sigma(\cdot)}\). Moreover, we represent \({\Sigma(\cdot)}\) immediately in terms of a boundary parameter \({\tau}\). We also characterize certain spectral properties of the extension \({\tilde{T}}\). Application of these results to ordinary differential operators of an odd order enables us to complete the results by Everitt and Krishna Kumar on the Titchmarsh–Weyl theory of such operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S., Malamud M.M., Mogilevskii V.I.: On Titchmarsh–Weyl functions and eigenfunction expansions of first-order symmetric systems. Integr.Equ. Oper. Theory 77, 303–354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atkinson F.V.: Discrete and Continuous Boundary Problems. Academic Press, New York (1963)

    Google Scholar 

  3. Behrndt J., Hassi S., de Snoo H., Wiestma R.: Square-integrable solutions and Weyl functions for singular canonical systems. Math. Nachr. 284(11-12), 1334–1383 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Derkach V.A., Hassi S., Malamud M.M., de Snoo H.S.V.: Generalized resolvents of symmetric operators and admissibility. Methods Funct. Anal. Topol. 6(3), 24–55 (2000)

    MATH  Google Scholar 

  5. Derkach V.A., Malamud M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dijksma A., Langer H., de Snoo H.S.V.: Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions. Math. Nachr. 161, 107–153 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunford N., Schwartz J.T.: Linear Operators. Part 2. Spectral Theory. Interscience Publishers, New York-London (1963)

    Google Scholar 

  8. Everitt W.N., Krishna Kumar V.: On the Titchmarsh–Weyl theory of ordinary symmetric differential expressions 1: the general theory. Nieuw Arch. voor Wiskd. 24(3), 1–48 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Everitt W.N., Krishna Kumar V.: On the Titchmarsh–Weyl theory of ordinary symmetric differential expressions 2 : the odd-order case. Nieuw Arch. voor Wiskd. 24(3), 109–145 (1976)

    MATH  MathSciNet  Google Scholar 

  10. Fulton Ch.T.: Parametrizations of Titchmarsh’s \({m(\lambda)}\)-functions in the limit circle case. Trans. Am. Math. Soc. 229, 51–63 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Gohberg, I., Krein, M.G.: Theory and applications of Volterra operators in Hilbert space. In: Transl. Math. Monographs, vol. 24. Am. Math. Soc., Providence (1970)

  12. Gorbachuk M.L.: On spectral functions of a differential equation of the second order with operator-valued coefficients. Ukr. Mat. Zh. 18(2), 3–21 (1966)

    Article  MATH  Google Scholar 

  13. Gorbachuk V.I., Gorbachuk M.L.: Boundary Problems for Differential-Operator Equations. Kluver Acad. Publ., Dordrecht (1991). [Russian edition: Naukova Dumka, Kiev (1984)].

  14. Hinton D.B., Shaw J.K.: Parameterization of the \({M(\lambda)}\) function for a Hamiltonian system of limit circle type. Proc. R. Soc. Edinb Sect. A 93(3–4), 349–360 (1982/83)

  15. Hinton Schneider D.B., Hinton A.: On the Titchmarsh–Weyl coefficients for singular S-Hermitian systems I. Math. Nachr. 163, 323–342 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hinton D.B., Schneider A.: Titchmarsh–Weyl coefficients for odd order linear Hamiltonian systems. J. Spectr. Math. 1, 1–36 (2006)

    Google Scholar 

  17. Hinton D.B., Schneider A.: On the spectral representation for singular selfadjoint boundary eigenfunction problems. In: Oper. Theory: Advances and Applications, vol. 106. Birkhauser, Basel (1998)

  18. Kato T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966)

    Book  Google Scholar 

  19. Kats I.S.: Spectral multiplicity of a second-order differential operator and expansion in eigenfunction. Izv. Akad. Nauk SSSR Ser. Mat. 27(5), 1081–1112 (1963)

    MathSciNet  Google Scholar 

  20. Kats I.S.: Linear relations generated by the canonical differential equation of phase dimension 2, and eigenfunction expansion. St. Petersb. Math. J. 14, 429–452 (2003)

    MathSciNet  Google Scholar 

  21. Kac, I.S., Krein, M.G.: On spectral functions of a string. In: Supplement to the Russian edition of F.V. Atkinson. Discrete and Continuous Boundary Problems. Mir, Moscow (1968)

  22. Khol’kin A.M.: Description of selfadjoint extensions of differential operators of an arbitrary order on the infinite interval in the absolutely indefinite case. Teor. Funkcii Funkcional. Anal. Prilozhen. 44, 112–122 (1985)

    MATH  Google Scholar 

  23. Khrabustovsky V.I.: On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. 3. Separated boundary conditions. J. Math. Phys. Anal. Geom. 2(4), 449–473 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Kogan V.I., Rofe-Beketov F.S.: On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. R. Soc. Edinb. Sect. A 74, 5–40 (1974/75)

  25. Krall A.M.: \({M(\lambda)}\)-theory for singular Hamiltonian systems with one singular endpoint. SIAM J. Math. Anal. 20, 664–700 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Krishna Kumar V.: On the Titchmarsh–Weyl theory of ordinary symmetric odd-order differential expressions and a direct convergence theorem. Quaest. Math. 5, 165–185 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Langer H., Textorious B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pac. J. Math. 72(1), 135–165 (1977)

    Article  MATH  Google Scholar 

  28. Lesch M., Malamud M.M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ. 189, 556–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Malamud M.M.: On the formula of generalized resolvents of a nondensely defined Hermitian operator. Ukr. Math. Zh. 44(12), 1658–1688 (1992)

    MATH  MathSciNet  Google Scholar 

  30. Malamud M.M., Mogilevskii V.I.: Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topol. 8(4), 72–100 (2002)

    MATH  MathSciNet  Google Scholar 

  31. Mogilevskii V.I.: Nevanlinna type families of linear relations and the dilation theorem. Methods Funct. Anal. Topol. 12(1), 38–56 (2006)

    MATH  MathSciNet  Google Scholar 

  32. Mogilevskii V.I.: Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers. Methods Funct. Anal. Topol. 12(3), 258–280 (2006)

    MATH  MathSciNet  Google Scholar 

  33. Mogilevskii V.I.: Description of spectral functions of differential operators with arbitrary deficiency indices. Math. Notes 81(4), 553–559 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mogilevskii V.I.: Boundary pairs and boundary conditions for general (not necessarily definite) first-order symmetric systems with arbitrary deficiency indices. Math. Nachr. 285(14–15), 1895–1931 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mogilevskii V.I.: On exit space extensions of symmetric operators with applications to first order symmetric systems. Methods Funct. Anal. Topol. 19(3), 268–292 (2013)

    MATH  MathSciNet  Google Scholar 

  36. Orcutt, B.C.: Canonical differential equations. Dissertation, University of Virginia (1969)

  37. S̆traus A.V.: On generalized resolvents and spectral functions of differential operators of an even order. Izv. Akad. Nauk. SSSR, Ser. Mat. 21, 785–808 (1957)

    MathSciNet  Google Scholar 

  38. Weidmann J.: Spectral theory of ordinary differential operators. In: Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Mogilevskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilevskii, V. On Eigenfunction Expansions of First-Order Symmetric Systems and Ordinary Differential Operators of an Odd Order. Integr. Equ. Oper. Theory 82, 301–337 (2015). https://doi.org/10.1007/s00020-015-2224-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2224-7

Mathematics Subject Classification

Keywords

Navigation