Skip to main content
Log in

On Titchmarsh–Weyl Functions and Eigenfunction Expansions of First-Order Symmetric Systems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study general (not necessarily Hamiltonian) first-order symmetric system J y′(t)−B(t)y(t) = Δ(t) f(t) on an interval \({\mathcal{I}=[a,b) }\) with the regular endpoint a. It is assumed that the deficiency indices n ±(T min) of the minimal relation T min associated with this system in \({L^2_\Delta(\mathcal{I})}\) satisfy \({n_-(T_{\rm min})\leq n_+(T_{\rm min})}\). We are interested in boundary conditions playing the role similar to that of separated self-adjoint boundary conditions for Hamiltonian systems. Instead we define λ-depending boundary conditions with Nevanlinna type spectral parameter τ = τ(λ) at the singular endpoint b. With this boundary value problem we associate the matrix m-function m(·) of the size \({N_\Sigma = {\rm dim} {\rm ker} (iJ+I)}\). Its role is similar to that of the Titchmarsh–Weyl coefficient for the Hamiltonian system. In turn, it allows one to define the Fourier transform \({V: L^2_\Delta(\mathcal{I}) \to L^2(\Sigma)}\) where Σ (·) is a spectral matrix function of m(·). If V is an isometry, then the (exit space) self-adjoint extension \({\tilde{T}}\) of T min induced by the boundary problem is unitarily equivalent to the multiplication operator in L 2(Σ). Hence the multiplicity of spectrum of \({\tilde{T}}\) does not exceed N Σ. We also parameterize a set of spectral functions Σ(·) by means of the set of boundary parameters τ. Similar parameterizations for various classes of boundary value problems have earlier been obtained by Kac and Krein, Fulton, Hinton and Shaw, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications, New York (1993)

    MATH  Google Scholar 

  2. Atkinson F.V.: Discrete and Continuous Boundary Problems. Academic Press, New York (1963)

    Google Scholar 

  3. Behrndt J., Hassi S., de Snoo H., Wiestma R.: Square-integrable solutions and Weyl functions for singular canonical systems. Math. Nachr. 284(11–12), 1334–1383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berezanskii, Yu.M.: Expansions in eigenfunctions of selfadjoint operators. American Mathematical Society, Providence (1968) (Russian edition: Naukova Dumka, Kiev, 1965)

  5. Bruk V.M.: On a class of boundary value problems with spectral parameter in the boundary condition. Math. USSR Sbornik. 29(2), 186–192 (1976)

    Article  MathSciNet  Google Scholar 

  6. Derkach V.A., Hassi S., Malamud M.M., de Snoo H.S.V.: Generalized resolvents of symmetric operators and admissibility. Methods Funct. Anal. Topol. 6(3), 24–55 (2000)

    MATH  Google Scholar 

  7. Derkach V.A., Hassi S., Malamud M.M., de Snoo H.S.V.: Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys. 16,–11760 (2009)

  8. Derkach V.A., Malamud M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derkach V.A., Malamud M.M.: The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73(2), 141–242 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dijksma A., Langer H., de Snoo H.S.V.: Hamiltonian systems with eigenvalue depending boundary conditions. Oper. Theory Adv. Appl. 35, 37–83 (1988)

    Google Scholar 

  11. Dijksma A., Langer H., de Snoo H.S.V.: Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions. Math. Nachr. 161, 107–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunford N., Schwartz J.T.: Linear Operators. Part 2. Spectral Theory. Interscience Publishers, New York (1963)

    Google Scholar 

  13. Fulton Ch.T.: Parametrizations of Titchmarsh’s m(ł)-functions in the limit circle case. Trans. Am. Math. Soc. 229, 51–63 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Gohberg, I., Krein, M.G.: Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monographs, vol. 24. American Mathematical Society, Providence (1970)

  15. Gorbachuk M.L.: On spectral functios of a differential equation of the second order with operator-valued coefficients. Ukrain. Mat. Zh. 18(2), 3–21 (1966)

    Article  MATH  Google Scholar 

  16. Gorbachuk, V.I., Gorbachuk, M.L.: Boundary problems for differential-operator equations. Kluver Academic Publishers, Dordrecht (1991) (Russian edition: Naukova Dumka, Kiev, 1984)

  17. Hassi S., de Snoo H.S.V., Winkler H.: Boundary-value problems for two-dimensional canonical systems. Integr. Equ. Oper. Theory 36, 445–479 (2000)

    Article  MATH  Google Scholar 

  18. Hinton, D.B., Shaw, J.K.: Parameterization of the M(ł) function for a Hamiltonian system of limit circle type. Proc. R Soc. Edinb. Sect. A 93(3–4), 349–360 (1982/1983)

    Google Scholar 

  19. Hinton D.B., Schneider A.: On the Titchmarsh–Weyl coefficients for singular S-Hermitian systems I. Math. Nachr. 163, 323–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinton D.B., Schneider A.: Titchmarsh–Weyl coefficients for odd order linear Hamiltonian systems. J. Spectr. Math. 1, 1–36 (2006)

    Google Scholar 

  21. Hinton D.B., Schneider A.: On the Spectral Representation for Singular Selfadjoint Boundary Eigenfunction Problems. Oper. Theory: Advances and Applications, vol. 106. Birkhauser, Basel (1998)

    Google Scholar 

  22. Khol’kin A.M.: Description of selfadjoint extensions of differential operators of an arbitrary order on the infinite interval in the absolutely indefinite case. Teor. Funkcii Funkcional. Anal. Prilozhen. 44, 112–122 (1985)

    MATH  Google Scholar 

  23. Kats, I.S.: On Hilbert spaces generated by monotone Hermitian matrix-functions. Khar’kov. Gos. Univ. Uchen. Zap. 34, 95–113 (1950) [Zap. Mat. Otdel. Fiz. -Mat. Fak. i Khar’kov. Mat. Obshch. 22(4), 95–113 (1950)]

  24. Kats I.S.: Linear relations generated by the canonical differential equation of phase dimension 2, and eigenfunction expansion. St. Petersburg Math. J. 14, 429–452 (2003)

    MathSciNet  Google Scholar 

  25. Kac, I.S., Krein, M.G.: On Spectral Functions of a String. Supplement to the Russian edition of F.V. Atkinson. Discrete and continuous boundary problems, Mir, Moscow (1968)

  26. Khrabustovsky V.I.: On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. 3. Separated boundary conditions. J. Math. Phys. Anal. Geom. 2(4), 449–473 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Kogan, V.I., Rofe-Beketov, F.S.: On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. R Soc. Edinb. Sect. A 74, 5–40 (1974/1975)

    Google Scholar 

  28. Kovalishina I.V.: Analytic theory of a class of interpolation problems. Izv. Akad. Nauk SSSR Ser. Mat. 47(3), 455–497 (1983)

    MathSciNet  Google Scholar 

  29. Krall A.M.: M(ł)-theory for singular Hamiltonian systems with one singular endpoint. SIAM J. Math. Anal. 20, 664–700 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Langer H., Textorious B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pac. J. Math. 72(1), 135–165 (1977)

    Article  MATH  Google Scholar 

  31. Langer H., Textorius B.: L-resolvent matrices of symmetric linear relations with equal defect numbers; appliccations to canonical differential relations. Integr. Equ. Oper. Theory 5, 208–243 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lesch M., Malamud M.M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ. 189, 556–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malamud M.M.: On the formula of generalized resolvents of a nondensely defined Hermitian operator. Ukr. Math. Zh. 44(12), 1658–1688 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Malamud M.M., Malamud S.M.: Spectral theory of operator measures in Hilbert space. St. Petersburg Math. J. 15(3), 323–373 (2003)

    Article  MathSciNet  Google Scholar 

  35. Malamud M.M., Mogilevskii V.I.: Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topol. 8(4), 72–100 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Malamud M., Neidhardt H.: Sturm–Liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equ. 252, 5875–5922 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mogilevskii V.I.: Nevanlinna type families of linear relations and the dilation theorem. Methods Funct. Anal. Topol. 12(1), 38–56 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Mogilevskii V.I.: Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers. Methods Funct. Anal. Topol. 12(3), 258–280 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Mogilevskii V.I.: Description of spectral functions of differential operators with arbitrary deficiency indices. Math. Notes 81(4), 553–559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mogilevskii V.I.: Boundary triplets and Titchmarsh–Weyl functions of differential operators with arbitrary deficiency indices. Methods Funct. Anal. Topol. 15(3), 280–300 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Mogilevskii V.I.: Boundary pairs and boundary conditions for general (not necessarily definite) first-order symmetric systems with arbitrary deficiency indices. Math. Nachr. 285(14–15), 1895–1931 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Naimark M.A.: Linear Differential Operators, vols. 1, 2. Harrap, London (1967)

    Google Scholar 

  43. Orcutt, B.C.: Canonical differential equations. Dissertation, University of Virginia (1969)

  44. Rofe-Beketov F.S.: Self-adjoint extensions of differential operators in the space of vector-valued functions. Teor. Funkcii Funkcional. Anal. Prilozhen. 8, 3–23 (1969)

    MathSciNet  MATH  Google Scholar 

  45. S̆traus A.V.: On generalized resolvents and spectral functions of differential operators of an even order. Izv. Akad. Nauk. SSSR Ser. Mat. 21, 785–808 (1957)

    MathSciNet  Google Scholar 

  46. Qi J.: Non-limit-circle criteria for singular Hamiltonian differential systems. Math. Anal. Appl. 305, 599–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Qi J.: Limit-point criteria for semi-degenerate singular Hamiltonian differential systems with perturbation terms. Math. Anal. Appl. 334, 983–997 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Weidmann J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Mogilevskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Malamud, M. & Mogilevskii, V. On Titchmarsh–Weyl Functions and Eigenfunction Expansions of First-Order Symmetric Systems. Integr. Equ. Oper. Theory 77, 303–354 (2013). https://doi.org/10.1007/s00020-013-2090-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2090-0

Mathematics Subject Classification (2010)

Keywords

Navigation