Skip to main content
Log in

The biophysics, biochemistry and physiology of CFTR

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rommens JM, Iannuzzi MC, Kerem B-S et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Article  CAS  PubMed  Google Scholar 

  2. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  3. Kerem B-S, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  4. Lewis HA, Wang C, Zhao X et al (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol 396:406–430

    Article  CAS  PubMed  Google Scholar 

  5. Atwell S, Brouillette CG, Conners K et al (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng Des Sel 23:375–384

    Article  CAS  PubMed  Google Scholar 

  6. Lewis HA, Zhao X, Wang C et al (2005) Impact of the DeltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280:1346–1353

    Article  CAS  PubMed  Google Scholar 

  7. Lewis HA, Buchanan SG, Burley SK et al (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  8. Mornon JP, Hoffmann B, Jonic S et al (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403

    Article  CAS  PubMed  Google Scholar 

  9. Mornon JP, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66:3469–3486

    Article  CAS  PubMed  Google Scholar 

  10. Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  CAS  PubMed  Google Scholar 

  11. Norimatsu Y, Ivetac A, Alexander C et al (2012) Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a “bottleneck” in the pore. Biochemistry 51:2199–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serohijos AW, Hegedus T, Riordan JR, Dokholyan NV (2008) Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding. PLoS Comput Biol 4:e1000008

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dalton J, Kalid O, Schushan M et al (2012) New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 52:1842–1853

    Article  CAS  PubMed  Google Scholar 

  14. Mio K, Ogura T, Mio M et al (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283:30300–30310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Riordan CR, Erickson A, Bear C et al (1995) Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells. J Biol Chem 270:17033–17043

    Article  PubMed  Google Scholar 

  16. Zhang L, Aleksandrov LA, Zhao Z et al (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167:242–251

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberg MF, O’Ryan LP, Hughes G et al (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286:42647–42654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenberg MF, Kamis AB, Aleksandrov LA et al (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279:39051–39057

    Article  CAS  PubMed  Google Scholar 

  19. Lukacs GL, Chang XB, Bear C et al (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268:21592–21598

    CAS  PubMed  Google Scholar 

  20. Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236:F1–F8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Cystic Fibrosis Foundation (FFC#4/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Moran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, O. The biophysics, biochemistry and physiology of CFTR. Cell. Mol. Life Sci. 74, 1–2 (2017). https://doi.org/10.1007/s00018-016-2384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2384-x

Keywords

Navigation