Skip to main content

Advertisement

Log in

When our genome is targeted by pathogenic bacteria

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Eukaryotic cells repair thousands of lesions arising in the genome at each cell cycle. The most hazardous damage is likely DNA double-strand breaks (DSB) that cleave the double helix backbone. DSBs occur naturally during T cell receptor and immunoglobulin gene recombination in lymphocytes. DSBs can also arise as a consequence of exogenous stresses (e.g., ionizing irradiation, chemotherapeutic drugs, viruses) or oxidative processes. An increasing number of studies have reported that infection with pathogenic bacteria also alters the host genome, producing DSB and other modifications on DNA. This review focuses on recent data on bacteria-induced DNA damage and the known strategies used by these pathogens to maintain a physiological niche in the host. Even after DNA repair in infected cells, “scars” often remain on chromosomes and might generate genomic instability at the next cell division. Chronic inflammation in tissue, combined with infection and DNA damage, can give rise to genomic instability and eventually cancer. A functional link between the DNA damage response and the innate immune response has been recently established. Pathogenic bacteria also highjack the host cell cycle, often acting on the stability of the master regulator p53, or dampen the DNA damage response to support bacterial replication in an appropriate reservoir. Except in a few cases, the molecular mechanisms responsible for DNA lesions are poorly understood, although ROS release during infection is a serious candidate for generating DNA breaks. Thus, chronic or repetitive infections with genotoxic bacteria represent a common source of DNA lesions that compromise host genome integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3-related

53BP1:

p53 binding protein 1

Chk1/2:

Checkpoint kinase 1/2

DNA-PK:

DNA protein kinase

dsDNA:

Double-stranded DNA

CDT:

Cytolethal distending toxin

DDR:

DNA damage response

DSB/SSB:

Double/Single strand breaks

HR:

Homologous recombination

IRIF:

Ionizing radiation induced foci

LLO:

Lysteriolysin O

MCD1:

Mediator of DNA-damage checkpoint 1

M/HDM2:

Mouse/Human double minute 2 homolog

MNR:

Mre11, Nbs1 and Rad50

MOI:

Multiplicity of infection

Mre11:

Mediator of DNA damage checkpoint

NHEJ:

Non-Homologous End Joining

OGG1:

8-oxoguanine DNA glycosylase

PARP:

Poly(ADP-ribose) polymerase

PRR:

Pattern recognition receptor

PI3KK:

Phosphatidylinositol 3-kinase-like kinase

ROS:

Reactive oxygen and nitrogen species

STING:

Stimulator of interferon genes

TTSS:

Type III secretion system

References

  1. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Touati E (2010) When bacteria become mutagenic and carcinogenic: lessons from H. pylori. Mutat Res 703:66–70

    Article  CAS  PubMed  Google Scholar 

  3. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851

    Article  PubMed  Google Scholar 

  4. Price BD, D’Andrea AD (2013) Cell Chromatin remodeling at DNA double-strand breaks. Cell 14:1344–1354

    Article  Google Scholar 

  5. Bernstein C, Prasad AR, Nfonsam V, Bernstein H (2013) DNA damage, DNA repair and cancer. In: Clark C (ed) New research directions in DNA repair, chap 16. InTech, ISBN: 978-953-51-1114-6, doi:10.5772/53919

  6. Britton S, Coates J, Jackson SP (2013) A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol 202:579–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bewersdorf J, Bennett BT, Knight KL (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc Natl Acad Sci USA 103:18137–18142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO 29:1446–1457

    Article  CAS  Google Scholar 

  10. Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR (2002) Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 123:542–553

    Article  CAS  PubMed  Google Scholar 

  12. Machado AM, Figueiredo C, Touati E, Máximo V, Sousa S, Michel V, Carneiro F, Nielsen FC, Seruca R, Rasmussen LJ (2009) Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin Cancer Res 15:2995–3002

    Article  CAS  PubMed  Google Scholar 

  13. Machado AM, Figueiredo C, Seruca R, Rasmussen LJ (2010) Helicobacter pylori infection generates genetic instability in gastric cells. Biochem Biophys Acta 1806:58–65

    CAS  PubMed  Google Scholar 

  14. Touati E, Michel V, Thiberge JM, Avé P, Huerre M, Bourgade F, Klungland A, Labigne A (2003) Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology 124:1408–1419

    Article  CAS  PubMed  Google Scholar 

  15. Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M (2009) Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem 284:22166–22172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wei J, Nagy TA, Vilgelm A, Ogden SR, Romero-Gallo J, Piazuelo MB, Correa P, Washington MK, El-Rifai W, Peek RM, Zaika A (2010) Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 139:1333–1343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL (2011) Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA 108:9238–9243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO, Stucki M, Kalali B, Gerhard M, Sartori AA, Lopes M, Müller A (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 108:14944–14949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217

    Article  CAS  PubMed  Google Scholar 

  20. Cuevas-Ramos G, Petit CR, Marcq I, Marcq I, Boury M, Oswald E, Nougayrède JP (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Secher T, Samba-Louaka A, Oswald E, Nougayrède JP (2013) Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One 8:e77157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Burton DG, Krizhanovsky V (2014) Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 71:4373–4386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, Pezet D, Wodrich H, Darfeuille-Michaud A, Bonnet R (2014) Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63:1932–1942

  24. Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S, Karch H, Bringer MA, Fayolle C, Carniel E, Rabsch W, Oelschlaeger TA, Oswald E, Forestier C, Hacker J, Dobrindt U (2009) Genetic structure of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 77:4696–4703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lai Y-C, Lin A-C, Chiang MK, Dai YH, Hsu CC, Lu MC, Liau CY, Chen YT (2014) Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One 9:e96292

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schwabe RF, Jobib C (2013) The microbiome and cancer. Nat Rev Cancer 13:800–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, Bringer MA, Darfeuille-Michaud A (2014) Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 20:6560–6572

    Article  PubMed Central  PubMed  Google Scholar 

  29. Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, Fodor AA, Jobin C (2014) Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 5:4724. doi:10.1038/ncomms5724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Olier M, Marcq I, Salvador-Cartier C, Secher T, Dobrindt U, Boury M, Bacquié V, Pénary M, Gaultier E, Nougayrède JP, Fioramonti J, Oswald E (2013) Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microb 3:501–509

    Article  Google Scholar 

  31. Bian X, Fu J, Plaza A, Herrmann J, Pistorius D, Stewart AF, Zhang Y, Müller R (2013) In vivo evidence for a prodrug activation mechanism during colibactin maturation. ChemBioChem 14:1194–1197

    Article  CAS  PubMed  Google Scholar 

  32. Brotherton CA, Wilson M, Balskus EP (2015) Isolation of a metabolite from pks island provides insights into colibactin biosynthesis and activity. Org Lett. doi:10.1021/acs.orglett.5b00432

    Google Scholar 

  33. Yan S, Sorrell M, Berman Z (2014) Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci 71:3951–3967

    Article  CAS  PubMed  Google Scholar 

  34. Lara-Tejero M, Galán JE (2000) A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354–357

    Article  CAS  PubMed  Google Scholar 

  35. Comayras C, Tasca C, Pérès SY, Ducommun B, Oswald E, De Rycke J (1997) Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun 65:5088–5095

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Guerra L, Cortes-Bratti X, Guidi R, Frisan T (2011) The biology of the cytolethal distending toxins. Toxins (Basel) 3:172–190

    Article  CAS  Google Scholar 

  37. Li L, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V, Thelestam M, Frisan T (2002) The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 4:87–99

    Article  CAS  PubMed  Google Scholar 

  38. Frisan T, Cortes-Bratti X, Chaves-Olarte E, Stenerlöw B, Thelestam M (2003) The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. Cell Microbiol 5:695–707

    Article  CAS  PubMed  Google Scholar 

  39. Blazkova H, Krejcikova K, Moudry P et al (2010) Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med 14:357–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fahrer J, Huelsenbeck J, Jaurich H, Dörsam B, Frisan T, Eich M, Roos WP, Kaina B, Fritz G (2014) Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent lebels of DNA double-strand breaks in human fibroblasts. DNA Repair 18:31–43

    Article  CAS  PubMed  Google Scholar 

  41. Cortes-Bratti X, Karlsson C, Lagergård T, Thelestam M, Frisan T (2001) The Haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways. J Biol Chem 276:5296–5302

    Article  CAS  PubMed  Google Scholar 

  42. Kitagawa T, Hoshida H, Akada R (2007) Genome-wide analysis of cellular response to bacterial genotoxin CdtB in yeast. Infect Immun 75:1393–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G (2013) From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the Escherichia coli cytolethal distending toxin. Cell Microbiol 15:1–15

    Article  CAS  PubMed  Google Scholar 

  44. Bezine E, Vignard J, Mirey G (2014) The cytolethal distending toxin effects on mammalian cells: a DNA damage perspective. Cells 3:592–615

    Article  PubMed Central  PubMed  Google Scholar 

  45. Guidi R, Guerra L, Levi L, Stenerlöw B, Fox JG, Josenhans C, Masucci M, Frisan T (2013) Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol 15:98–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344

    Article  CAS  PubMed  Google Scholar 

  47. Kunz AN, Brook I (2010) Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy 56:492–500

    Article  CAS  PubMed  Google Scholar 

  48. Furukawa S, Kuchma SL, O’Toole GA (2014) Keeping their options open: acute versus persistent infections. J Bacteriol 188:1211–1217

    Article  Google Scholar 

  49. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774

    Article  CAS  PubMed  Google Scholar 

  50. Hauser AR, Cobb E, Bodi M, Mariscal D, Vallés J, Engel JN, Rello J (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30:521–528

    Article  CAS  PubMed  Google Scholar 

  51. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Elsen S, Collin-Faure V, Gidrol X, Lemercier C (2013) The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells. Cell Mol Life Sci 70:4385–4397

    Article  CAS  PubMed  Google Scholar 

  53. Wu M, Huang H, Zhang W, Kannan S, Weaver A, McKibben M, Herington D, Zeng H, Gao H (2011) Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect Immun 79:75–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. David SS, O’Shea VL, Kundu S (2007) Base-excision repar of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Song J, Bent AF (2014) Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog 10:e1004030

    Article  PubMed Central  PubMed  Google Scholar 

  56. Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    Article  CAS  PubMed  Google Scholar 

  57. Markou P, Apidianakis Y (2014) Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front Cell Infect Microbiol 3:1–5

    Article  Google Scholar 

  58. The Human Microbiome Projet Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  59. Bertrand X, Thouverez M, Talon D, Boillot A, Capellier G, Floriot C, Hélias JP (2001) Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units. Intensive Care Med 27:1263–1268

    Article  CAS  PubMed  Google Scholar 

  60. Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, Arbibe L (2012) Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 11:240–252

    Article  CAS  PubMed  Google Scholar 

  61. Rudel T (2012) To die or not to die: Shigella has an answer. Cell Host Microbe 11:219–221

    Article  CAS  PubMed  Google Scholar 

  62. Word Health Organization, Department of Reproductive Health and Research (2012) Emergence of multi-drug resistant Neisseria gonorrhoeae. Threat of global rise in untreatable sexually transmitted infections. WHO reference number: WHO/RHR/11.14. Fact sheet11.14

  63. Vielfort K, Söderholm N, Weyler L, Vare D, Löfmark S, Aro H (2013) Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, p27 and p53 in non-tumor epithelial cells. J Cell Sci 126:339–347

    Article  CAS  PubMed  Google Scholar 

  64. Leitão E, Costa AC, Brito C, Costa L, Pombinho R, Cabanes D, Sousa S (2014) Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 13:928–940

    Article  PubMed Central  PubMed  Google Scholar 

  65. Samba-Louaka A, Pereira JM, Nahori MA, Villiers V, Deriano L, Hamon MA, Cossart P (2014) Listeria monocytogenes dampens the DNA damage response. PLoS Pathog 10(10):e1004470. doi:10.1371/journal.ppat.1004470

    Article  PubMed Central  PubMed  Google Scholar 

  66. Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH (2011) Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxydase to promote Listeria monocytogenes infection. Cell Host Microbe 10:627–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppée JY, Cossart P, Hamon MA (2013) A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:525. doi:10.1126/science.1238858

    Article  CAS  Google Scholar 

  68. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH (2013) Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 3:a010256

    Article  PubMed Central  PubMed  Google Scholar 

  69. Chumduri C, Gurumurthy RK, Zadora PK, Mi Y, Meyer TF (2013) Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe 13:746–758

    Article  CAS  PubMed  Google Scholar 

  70. Siegl C, Prusty BK, Karunakaran K, Wischhusen J, Rudel T (2014) Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Reports 9:918–929

    Article  CAS  PubMed  Google Scholar 

  71. González E, Rother M, Kerr MC, Al-Zeer MA, Abu-Lubad M, Kessler M, Brinkmann V, Loewer A, Meyer TF (2014) Chlamydia infection depends on a functional MDM2-p53 axis. Nat Commun. 5:5201. doi:10.1038/ncomms6201

    Article  PubMed Central  PubMed  Google Scholar 

  72. Padberg I, Janßen S, Meyer TF (2013) Chlamydia trachomatis inhibits telomeric DNA damage signaling via transient hTERT upregulation. Int J Med Microbiol 303:463–474

    Article  CAS  PubMed  Google Scholar 

  73. Abdullah Z, Knolle PA (2014) Scaling of immune responses against intracellular bacterial infection. EMBO J 33:2283–2294

    Article  CAS  PubMed  Google Scholar 

  74. Paldudan SR, Bowie AG (2013) Immune sensing of DNA. Immunity 38:870–880

    Article  Google Scholar 

  75. Chatzinikolaou G, Karakasilioti I, Garinis GA (2014) DNA damage and innate immunity: links and trade-offs. Trends Immunol 35:429–435

    Article  CAS  PubMed  Google Scholar 

  76. Jakobsen MR, Paludan SR (2015) IFI16: at the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev 25:649–655

    Article  Google Scholar 

  77. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN, Komatsu K, Akira S, Kawai T (2013) DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci USA 110:2969–2974

  78. Roth S, Rottach A, Lotz-Havla AS, Laux V, Muschaweckh A, Gersting SW, Muntau AC, Hopfner KP, Jin L, Vanness K, Petrini JH, Drexler I, Leonhardt H, Ruland J (2014) Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1β production. Nat Immunol 15:538–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL (2012) DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 1:e00047. doi:10.755/eLife.00047

    Article  PubMed Central  PubMed  Google Scholar 

  80. Härtlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, Lienenklaus S, Nilsson LM, Kröger A, Nilsson JA, Ek T, Weiss S, Gekara NO (2015) DNA damage primes the type I Interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42:332–343

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

CL thanks Dr. Joël Gaffé (Adaptation and Pathogeny of Micro-organisms Laboratory, University Grenoble Alpes, CNRS) for critical reading and comments on the manuscript, Dr. Sandeep Nadendla for his careful reading and help with English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudie Lemercier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemercier, C. When our genome is targeted by pathogenic bacteria. Cell. Mol. Life Sci. 72, 2665–2676 (2015). https://doi.org/10.1007/s00018-015-1900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1900-8

Keywords

Navigation